概率论中两种特殊的 E(x) 计算方法:先求积分再求导,或者先求导再求积分

2024-06-10 13:52

本文主要是介绍概率论中两种特殊的 E(x) 计算方法:先求积分再求导,或者先求导再求积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了求解某个函数 ( E(x) ),可以使用两种方法:先求积分再求导,或者先求导再求积分。这里我们以数列求和公式为例,分别介绍这两种方法。

1. 先求积分再求导

假设我们有一个函数 ( f(x) ) 的级数展开:

E ( x ) = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1anxn

我们可以通过对 ( E(x) ) 进行积分,再求导来得到 ( E(x) )。

(1) 对 ( E(x) ) 积分

定义一个新函数 ( F(x) ):

F ( x ) = ∫ E ( x ) d x = ∫ ∑ n = 1 ∞ a n x n d x F(x) = \int E(x) \, dx = \int \sum_{n=1}^{\infty} a_n x^n \, dx F(x)=E(x)dx=n=1anxndx

交换积分和求和次序:

F ( x ) = ∑ n = 1 ∞ a n ∫ x n d x F(x) = \sum_{n=1}^{\infty} a_n \int x^n \, dx F(x)=n=1anxndx

计算积分:

∫ x n d x = x n + 1 n + 1 \int x^n \, dx = \frac{x^{n+1}}{n+1} xndx=n+1xn+1

所以,

F ( x ) = ∑ n = 1 ∞ a n x n + 1 n + 1 F(x) = \sum_{n=1}^{\infty} a_n \frac{x^{n+1}}{n+1} F(x)=n=1ann+1xn+1

(2) 对 ( F(x) ) 求导

我们现在对 ( F(x) ) 求导:

E ( x ) = d d x F ( x ) = d d x ∑ n = 1 ∞ a n x n + 1 n + 1 E(x) = \frac{d}{dx} F(x) = \frac{d}{dx} \sum_{n=1}^{\infty} a_n \frac{x^{n+1}}{n+1} E(x)=dxdF(x)=dxdn=1ann+1xn+1

交换求导和求和次序:

E ( x ) = ∑ n = 1 ∞ a n d d x ( x n + 1 n + 1 ) E(x) = \sum_{n=1}^{\infty} a_n \frac{d}{dx} \left( \frac{x^{n+1}}{n+1} \right) E(x)=n=1andxd(n+1xn+1)

计算导数:

d d x ( x n + 1 n + 1 ) = ( n + 1 ) x n n + 1 = x n \frac{d}{dx} \left( \frac{x^{n+1}}{n+1} \right) = \frac{(n+1) x^n}{n+1} = x^n dxd(n+1xn+1)=n+1(n+1)xn=xn

所以,

E ( x ) = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1anxn

这验证了我们的结果。

2. 先求导再求积分

我们也可以通过先对 ( E(x) ) 求导,再对导函数进行积分来得到 ( E(x) )。

(1) 对 ( E(x) ) 求导

对 ( E(x) ) 求导:

E ′ ( x ) = d d x ( ∑ n = 1 ∞ a n x n ) E'(x) = \frac{d}{dx} \left( \sum_{n=1}^{\infty} a_n x^n \right) E(x)=dxd(n=1anxn)

交换求导和求和次序:

E ′ ( x ) = ∑ n = 1 ∞ a n d d x ( x n ) E'(x) = \sum_{n=1}^{\infty} a_n \frac{d}{dx} (x^n) E(x)=n=1andxd(xn)

计算导数:

d d x ( x n ) = n x n − 1 \frac{d}{dx} (x^n) = n x^{n-1} dxd(xn)=nxn1

所以,

E ′ ( x ) = ∑ n = 1 ∞ a n n x n − 1 E'(x) = \sum_{n=1}^{\infty} a_n n x^{n-1} E(x)=n=1annxn1

(2) 对 ( E’(x) ) 积分

现在对 ( E’(x) ) 积分:

E ( x ) = ∫ E ′ ( x ) d x = ∫ ∑ n = 1 ∞ a n n x n − 1 d x E(x) = \int E'(x) \, dx = \int \sum_{n=1}^{\infty} a_n n x^{n-1} \, dx E(x)=E(x)dx=n=1annxn1dx

交换积分和求和次序:

E ( x ) = ∑ n = 1 ∞ a n n ∫ x n − 1 d x E(x) = \sum_{n=1}^{\infty} a_n n \int x^{n-1} \, dx E(x)=n=1annxn1dx

计算积分:

∫ x n − 1 d x = x n n \int x^{n-1} \, dx = \frac{x^n}{n} xn1dx=nxn

所以,

E ( x ) = ∑ n = 1 ∞ a n n x n n = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n n \frac{x^n}{n} = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1annnxn=n=1anxn

这验证了我们的结果。

通过这两种方法,我们可以得到同样的函数 ( E(x) ),即:

E ( x ) = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1anxn

这篇关于概率论中两种特殊的 E(x) 计算方法:先求积分再求导,或者先求导再求积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048349

相关文章

Docker镜像pull失败两种解决办法小结

《Docker镜像pull失败两种解决办法小结》有时候我们在拉取Docker镜像的过程中会遇到一些问题,:本文主要介绍Docker镜像pull失败两种解决办法的相关资料,文中通过代码介绍的非常详细... 目录docker 镜像 pull 失败解决办法1DrQwWCocker 镜像 pull 失败解决方法2总

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Android自定义Scrollbar的两种实现方式

《Android自定义Scrollbar的两种实现方式》本文介绍两种实现自定义滚动条的方法,分别通过ItemDecoration方案和独立View方案实现滚动条定制化,文章通过代码示例讲解的非常详细,... 目录方案一:ItemDecoration实现(推荐用于RecyclerView)实现原理完整代码实现

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录