NVIDIA Jetson TX1 系列开发教程之十四:YOLO安装与优化加速

2024-06-09 08:58

本文主要是介绍NVIDIA Jetson TX1 系列开发教程之十四:YOLO安装与优化加速,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NVIDIA Jetson TX1 系列开发教程之十四:YOLO安装与优化加速


  • 转载请注明作者和出处:http://blog.csdn.net/u011475210
  • 嵌入式平台:NVIDIA Jetson TX1
  • 嵌入式系统:Ubuntu16.04
  • 编者: WordZzzz

  • NVIDIA Jetson TX1 系列开发教程之十四YOLO安装与优化加速
    • 前言
    • YOLO安装
    • YOLO的优化加速
      • 修改网络模型输入图像尺寸大小
      • 修改预览分辨率
      • 修改摄像头分辨率


  系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~


前言

  下周甲方要来查看项目进行,我着急忙慌的在刚刷完机的板子上编译YOLO,然而,webcom不好用······记性真是差的不行,赶紧打开markdown,把先前的笔记都整理出来。

  本篇文章分为两个部分,第一部分是YOLO安装,第二部分是YOLO的优化加速。

YOLO安装

  YOLO官网:https://pjreddie.com/darknet/yolo/

  不说废话,就是干。

1.获取源码:

git clone https://github.com/pjreddie/darknet
cd darknet

2.修改Makefile

  我们打开MakeFile文件:

vim Makefile

  Makefile内容如下:

GPU=0
CUDNN=0
OPENCV=0
OPENMP=0
DEBUG=0ARCH= -gencode arch=compute_20,code=[sm_20,sm_21] \-gencode arch=compute_30,code=sm_30 \-gencode arch=compute_35,code=sm_35 \-gencode arch=compute_50,code=[sm_50,compute_50] \-gencode arch=compute_52,code=[sm_52,compute_52]# This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52VPATH=./src/:./examples
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/CC=gcc
NVCC=nvcc 
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread 
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unknown-pragmas -Wfatal-errors -fPICifeq ($(OPENMP), 1) 
CFLAGS+= -fopenmp
endififeq ($(DEBUG), 1) 
OPTS=-O0 -g
endifCFLAGS+=$(OPTS)ifeq ($(OPENCV), 1) 
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv` 
COMMON+= `pkg-config --cflags opencv` 
endififeq ($(GPU), 1) 
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endififeq ($(CUDNN), 1) 
COMMON+= -DCUDNN 
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endifOBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o  lstm_layer.o
EXECOBJA=captcha.o lsd.o super.o voxel.o art.o tag.o cifar.o go.o rnn.o rnn_vid.o compare.o segmenter.o regressor.o classifier.o coco.o dice.o yolo.o detector.o  writing.o nightmare.o swag.o darknet.o 
ifeq ($(GPU), 1) 
LDFLAGS+= -lstdc++ 
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endifEXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h#all: obj backup results $(SLIB) $(ALIB) $(EXEC)
all: obj  results $(SLIB) $(ALIB) $(EXEC)$(EXEC): $(EXECOBJ) $(ALIB)$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)$(ALIB): $(OBJS)$(AR) $(ARFLAGS) $@ $^$(SLIB): $(OBJS)$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)$(OBJDIR)%.o: %.c $(DEPS)$(CC) $(COMMON) $(CFLAGS) -c $< -o $@$(OBJDIR)%.o: %.cu $(DEPS)$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@obj:mkdir -p obj
backup:mkdir -p backup
results:mkdir -p results.PHONY: cleanclean:rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ)

  我们只需要关注前几行:

GPU=0
CUDNN=0
OPENCV=0
OPENMP=0
DEBUG=0ARCH= -gencode arch=compute_20,code=[sm_20,sm_21] \-gencode arch=compute_30,code=sm_30 \-gencode arch=compute_35,code=sm_35 \-gencode arch=compute_50,code=[sm_50,compute_50] \-gencode arch=compute_52,code=[sm_52,compute_52]

  前五行的这些类似于宏定义,在make的时候会导致某些程序功能的开启与关闭,0代表关闭,1代表开启。我直接把前四个都打开了。想用GPU,那么前两行就得打开;想用webcom等OpenCV实现的程序,那么就需要打开OPENCV;至于OPENCMP,我只知道它是用来实现多线程优化加速的,所以我干脆也打开了。

  • TX1计算能力是53,对应的配置:
GPU=1
CUDNN=1
OPENCV=1
OPENMP=1
DEBUG=0ARCH= -gencode arch=compute_53,code=[sm_53,sm_53]
  • TX1计算能力是53,对应的配置:
GPU=1
CUDNN=1
OPENCV=1
OPENMP=1
DEBUG=0ARCH= -gencode arch=compute_62,code=[sm_62,sm_62]

3.保存Makefile之后,开始编译:

make

4.下载预训练好的模型:

wget https://pjreddie.com/media/files/yolo.weights
wget https://pjreddie.com/media/files/tiny-yolo-voc.weights
wget https://pjreddie.com/media/files/tiny-yolo.weights

5.测试:

  我直接用webcom来测试。注意,必须使用支持V4L2的摄像头,板载的摄像头是不支持的,当然,如果你在Makefile里面没打开Opencv,这里是会报错的。

  • COCO数据集训练的YOLO(干跑3帧左右):
./darknet detector demo cfg/coco.data cfg/yolo.cfg yolo.weights
  • COCO数据集训练的TINY-YOLO(干跑15帧左右):
./darknet detector demo cfg/coco.data cfg/tiny-yolo.cfg tiny-yolo.weights
  • COCO数据集训练的TINY-YOLO(干跑15帧左右):
./darknet detector demo cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights

注:大家如果想看看不开GPU跑成什么样子,可以加入参数-nogpu。举个栗子:

  • COCO数据集训练的TINY-YOLO(关掉GPU):
./darknet -nogpu detector demo cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights
  • 查看GPU使用情况:
$ sudo ~/tegrastats

YOLO的优化加速

  大家是不是不满足上面的帧率,别着急,WordZzzz带着你搞优化啊。正经说来,也不算优化,就是调调参数,让代码跑的快点。

修改网络模型输入图像尺寸大小

  YOLOv2做了很多优化,其中就有为了提高小物体检测准确率而增加的多尺度训练(这里说的不够专业,后面有时间了专门写篇讲解YOLO的文章)。

  原来的YOLO网络使用固定的448 * 448的图片作为输入,现在加入anchor boxes后,输入变成了416 * 416。目前的网络只用到了卷积层和池化层,那么就可以进行动态调整(意思是可检测任意大小图片)。作者希望YOLOv2具有不同尺寸图片的鲁棒性,因此在训练的时候也考虑了这一点。

  不同于固定输入网络的图片尺寸的方法,作者在几次迭代后就会微调网络。没经过10次训练(10 epoch),就会随机选择新的图片尺寸。YOLO网络使用的降采样参数为32,那么就使用32的倍数进行尺度池化{320,352,…,608}。最终最小的尺寸为320 * 320,最大的尺寸为608 * 608。接着按照输入尺寸调整网络进行训练。

  这种机制使得网络可以更好地预测不同尺寸的图片,意味着同一个网络可以进行不同分辨率的检测任务,在小尺寸图片上YOLOv2运行更快,在速度和精度上达到了平衡。

  所以,我们可以修改输入尺寸大小,来提高YOLO运行速度。

  随便打开一个cfg下的cfg文件,如“tiny-yolo.cfg”,内容如下:

[net]
# Training
# batch=64
# subdivisions=2
# Testing
batch=1
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky[maxpool]
size=2
stride=1[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky###########[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=425
activation=linear[region]
anchors =  0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
bias_match=1
classes=80
coords=4
num=5
softmax=1
jitter=.2
rescore=0object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1absolute=1
thresh = .6
random=1

  同样的,我们只需要看前面几行就行,把width和height修改成最小尺度:

width=288
height=288

  此时再次使用COCO数据集训练的TINY-YOLO进行测试,帧率可以提高到20左右:

./darknet detector demo cfg/coco.data cfg/tiny-yolo.cfg tiny-yolo.weights

修改预览分辨率

  可以直接X掉预览窗口,这样,预览窗口减小后,速度也会提升,只不过有时候效果不明显。

  当然,大家也可以修改源码然后重新编译。源码中预览窗口大小的代码在src/demo.c中的第279行。我把预览分辨率改成了1280 * 720,当然你还可以改的更小。改完之后重新编译。

    if(!prefix){cvNamedWindow("Demo", CV_WINDOW_NORMAL);if(fullscreen){cvSetWindowProperty("Demo", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);} else {cvMoveWindow("Demo", 0, 0);cvResizeWindow("Demo", 1280, 720);}}

修改摄像头分辨率

  一开始就让摄像头采集到的分辨率低点,也是有效果的。

./darknet detector demo cfg/coco.data cfg/tiny-yolo.cfg tiny-yolo.weights -w 640 -h 480

  经过上述三步的优化之后,我用COCO数据集,帧率峰值都能到30(TX2,TX1慢5帧左右)。


系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz


这篇关于NVIDIA Jetson TX1 系列开发教程之十四:YOLO安装与优化加速的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044733

相关文章

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

如何在pycharm安装torch包

《如何在pycharm安装torch包》:本文主要介绍如何在pycharm安装torch包方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录在pycharm安装torch包适http://www.chinasem.cn配于我电脑的指令为适用的torch包为总结在p