基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL

2024-06-09 06:12

本文主要是介绍基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:《大模型面试宝典》(2024版) 发布!


本文将会介绍Text to SQL相关的概念,如何使用大模型SFT实现Text to SQL,最后介绍Text to SQL的应用场景。

引言

Text to SQL,又被称为Natural Language to SQL(简称NL2SQL),指的是将自然语言描述转化为数据库的SQL查询语句。由于数据库在我们日常工作生活中随处可见,因此Text to SQL技术也获得业界和学术界的不少研究与关注。

举个例子,比如在问题“What’s the population of New York city?”,那么我们在相关的某张表格(比如city表)中,对应的SQL语句应当为“SELECT POPULATION FROM city WHERE name = “New York””,此时数据库应当能执行该SQL语句。

常见的Text to SQL数据集有WIKISQL, Spider, ATIS, GeoQuery。以往已经有不少的NLP或者机器学习相关的技术涉及Text to SQL,但效果都比较一般。

接下来,我们将会介绍如何使用大模型SFT技术来实现Text to SQL,看看大模型的表现。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要交流、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:CSDN + 技术交流

SFT

我们使用HuggingFace上的b-mc2/sql-create-context数据集,该数据集只有78,577条训练数据,无测试集数据,字段为answer, question, context,其中answer为最终产生的SQL语句,question为用户问题,context为数据库表格创建语句。

比如其中在一个样本中,question为How many heads of the departments are older than 56 ?, context为CREATE TABLE head (age INTEGER), answer为SELECT COUNT(*) FROM head WHERE age > 56

我们使用谷歌开源的Gemma-7B模型对改数据集进行指令微调。以上述样本为例,对应的指令格式为:

\nBelow is an instruction that describes a task.Write a response that appropriately completes the request.\n### Instruction: How many heads of the departments are older than 56 ?\n### Database Schema:\nCREATE TABLE head (age INTEGER)\n### Response:\nSELECT COUNT(*) FROM head WHERE age > 56\n<eos>\n

其中为Gemma-7B模型的结束标志符。

使用trl可以很方面地对Gemma-7B模型进行SFT,代码如下:

from datasets import load_dataset
import torch
from peft import LoraConfig
from trl import SFTTrainer
from transformers import TrainingArguments
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig# Hugging Face model id
model_id = "./models/gemma-7b"# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(model_id,device_map="auto",torch_dtype=torch.bfloat16,quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right'train_dataset = load_dataset("json", data_files="sql-create-context.json")['train']
print(train_dataset[0])
print(f"train size: {len(train_dataset)}")# LoRA config based on QLoRA paper & Sebastian Raschka experiment
peft_config = LoraConfig(lora_alpha=16,lora_dropout=0.05,r=64,bias="none",target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj"],task_type="CAUSAL_LM", 
)args = TrainingArguments(output_dir="output",                    # directory to save and repository idnum_train_epochs=2,                     # number of training epochsper_device_train_batch_size=8,          # batch size per device during traininggradient_accumulation_steps=4,          # number of steps before performing a backward/update passgradient_checkpointing=True,            # use gradient checkpointing to save memoryoptim="paged_adamw_8bit",              save_strategy="epoch",logging_strategy="steps",logging_steps=10,                       # log every 10 stepsbf16=True,                              # use bfloat16 precisionlearning_rate=1e-4,                     # learning rate, based on QLoRA papermax_grad_norm=0.3,                      # max gradient norm based on QLoRA paperwarmup_ratio=0.1,                      # warmup ratio based on QLoRA paperlr_scheduler_type="constant",           # use constant learning rate schedulerpush_to_hub=False,                       # push model to hubreport_to="tensorboard",                # report metrics to tensorboard
)max_seq_length = 1024trainer = SFTTrainer(model=model,args=args,train_dataset=train_dataset,peft_config=peft_config,max_seq_length=max_seq_length,tokenizer=tokenizer,packing=False,dataset_text_field="text"
)trainer.train()
trainer.save_model()

训练完后,我们使用下面的脚本进行新样本的预测,代码如下:

from transformers import AutoModelForCausalLM, AutoTokenizerpeft_model_id = "./output/checkpoint-4911"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained("./models/gemma-7b")while True:question = input("enter a question: ")context = input("enter database schema: ")input_text = f"""
Below is an instruction that describes a task.Write a response that appropriately completes the request.
### Instruction: {question}
### Database Schema:
{context}
### Response:
"""encoding = tokenizer(input_text, return_tensors="pt").to("cuda")outputs = model.generate(**encoding, max_new_tokens=100, temperature=0.1, do_sample=True)generated_ids = outputs[:, encoding.input_ids.shape[1]:]generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)print("Instruction: ", input_text)print("SQL: ", generated_texts[0].strip())

为了验证改模型的效果,我们在新样本进行测试。

  • 例子1

直接从SQL测验网站进行测试,第一个例子为:

图片

测试题例子1

模型生成的SQL语句为:SELECT * FROM CITY WHERE COUNTRYCODE = "USA" AND POPULATION > 100000,成功运行!

图片

生成的SQL语句执行成功1

  • 例子2

第二个例子为:

图片

生成的SQL语句为SELECT CITY, STATE FROM STATION,也能执行成功!

  • 例子3

上述的两个较为简单,我们再来看个复杂点的例子。第三个例子为:

图片

生成的SQL语句为SELECT CITY FROM STATION WHERE SUBSTR(CITY, -1) NOT IN ('A', 'E', 'I', 'O', 'U') GROUP BY CITY,竟然能执行成功!

  • 例子4

第四例子为两个表格,需要对表格进行join,如下:

图片

生成的SQL语句为SELECT T1.NAME FROM CITY AS T1 JOIN COUNTRY AS T2 ON T1.COUNTRYCODE = T2.CODE WHERE T2.CONTINENT = 'Africa',竟然能执行成功!

以上只是找了几个比较好的例子,实际上还是有很多生成的SQL语句无法通过测试的。

在实际的Text to SQL应用场景中,需要调整system prompt,对指令进行更加详细的描述,比较加入表格、字段描述。同时,还需要质量更高、更贴近业务场景的训练数据,以及合适的大模型等,需要保证生成的SQL语句的可执行准确率。

表格问答应用

我们举个例子,来说明Text to SQL和大模型结合起来使用,在表格问答场景中能有更好的表现。

Mysql中的users表的描述:

+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+

表格中的所有数据:

+----+---------------+------+-------+---------------------+
| id | name          | age  | place | insert_time         |
+----+---------------+------+-------+---------------------+
|  1 | Jack          |   25 | USA   | 2023-12-23 23:48:48 |
|  2 | Green         |   26 | UK    | 2023-12-23 23:48:58 |
|  3 | Alex          |   31 | GER   | 2023-12-23 23:49:03 |
|  4 | Chen          |   52 | CHN   | 2023-12-23 23:49:08 |
|  5 | Zhang         |   42 | CHN   | 2023-12-23 23:49:13 |
|  6 | ElasticSearch |   12 | USA   | 2023-12-24 00:41:20 |
|  7 | Kibana        |   24 | USA   | 2023-12-24 00:41:37 |
|  8 | Logstash      |   36 | USA   | 2023-12-24 00:42:41 |
+----+---------------+------+-------+---------------------+

我们考虑以下四个问题:

  • How old is Chen?

  • Who is the oldest person and its age and place?

  • How many persons come from USA and what are their names and age?

  • Return the top 5 oldest person in descending order with their name and age.

  • what are the names that begins with J or E?

使用LlamaIndex工具中的Text-to-SQL QueryEngine对上述四个问题进行问答。代码如下:

# -*- coding: utf-8 -*-
# @file: nl2sql_test.py
# llama-index == 0.9.30
# SQLAlchemy==2.0.20
# PyMySQL == 1.1.0
from sqlalchemy import create_engine, textfrom llama_index import SQLDatabase, ServiceContext
from llama_index.llms import OpenAI
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEnginefrom llama_index.indices.struct_store.sql_query import (SQLTableRetrieverQueryEngine,
)
from llama_index.objects import (SQLTableNodeMapping,ObjectIndex,SQLTableSchema,
)
from llama_index import VectorStoreIndex
from llama_index.retrievers import NLSQLRetriever
from llama_index.query_engine import RetrieverQueryEnginellm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
service_context = ServiceContext.from_defaults(llm=llm)engine = create_engine("mysql+pymysql://root:root@localhost:3306/orm_test")
sql_database = SQLDatabase(engine, include_tables=["users"])# text-to-sql query engine, simple example
query_engine = NLSQLTableQueryEngine(sql_database=sql_database,tables=["users"]
)
query_str = "How old is Chen?"
response = query_engine.query(query_str)
print(response)
print('*' * 30, end='\n\n')# total size of table schema overflows context window size
# then use SQLTableNodeMapping
# set Logging to DEBUG for more detailed outputs
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [(SQLTableSchema(table_name="users"))
]  # add a SQLTableSchema for each tableobj_index = ObjectIndex.from_objects(table_schema_objs,table_node_mapping,VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(sql_database, obj_index.as_retriever(similarity_top_k=1)
)response = query_engine.query("Who is the oldest person and its age and place?")
print(response)
print('*' * 30, end='\n\n')response = query_engine.query("How many persons come from USA and what are their names and age?")
print(response.metadata)
print(response.metadata['result'])
print(response)
print('*' * 30, end='\n\n')# manually set context text
city_stats_text = ("This table gives information regarding the persons and their age and place.\n""The insert time means when the record was inserted into this table."
)table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [(SQLTableSchema(table_name="users", context_str=city_stats_text))
]# text-to-sql retriever
# SQL Retriever
# default retrieval (return_raw=True)
nl_sql_retriever = NLSQLRetriever(sql_database, tables=["users"], return_raw=True
)results = nl_sql_retriever.retrieve("Return the top 5 oldest person in descending order with their name and age."
)for n in results:print(n)
print('*' * 30, end='\n\n')# default retrieval (return_raw=False)
nl_sql_retriever = NLSQLRetriever(sql_database, tables=["users"], return_raw=False
)
results = nl_sql_retriever.retrieve("Return the top 5 oldest person in descending order with their name and age."
)# NOTE: all the content is in the metadata
for n in results:print(n, n.metadata)
print('*' * 30, end='\n\n')# compose SQL Retriever with RetrieverQueryEngine to synthesize a response
nl_sql_retriever = NLSQLRetriever(sql_database, tables=["users"], return_raw=True
)
query_engine = RetrieverQueryEngine.from_args(nl_sql_retriever)
queries = ["Return the top 5 oldest person in descending order with their name and age.","what are the names that begins with J or E?"]
for query in queries:response = query_engine.query(query)print(response)
print('*' * 30, end='\n\n')

对应的输出答案为(中间有部分省略):

Chen is 52 years old.
******************************
The oldest person is Chen, who is 52 years old and is from China.
******************************
There are four persons from the USA in the database. Their names are Jack, ElasticSearch, Kibana, and Logstash, and their ages are 25, 12, 24, and 36 respectively.
******************************
The top 5 oldest people in descending order with their names and ages are:
1. Chen, 52
2. Zhang, 42
3. Logstash, 36
4. Alex, 31
5. Green, 26
******************************
The names that begin with J or E are ElasticSearch and Jack.

看来Text to SQL对于表格问答场景有很大帮助。

补充

对于上述表格问答应用中的5个问题,我们使用Gemma-7B微调的Text to SQL模型进行回答,生成的SQL语句如下:

  • SELECT age FROM users WHERE place = ‘Chen’

  • SELECT id, name, age, place FROM users ORDER BY age DESC LIMIT 1

  • SELECT id, name, age FROM users WHERE place = ‘USA’ ORDER BY insert_time

  • SELECT id, name, age FROM users ORDER BY age DESC LIMIT 5

  • SELECT name FROM users WHERE name LIKE ‘J%’ OR name LIKE ‘E%’

将它们在MySQL中进行执行,结果如下:

图片

MySQL执行结果

所有的语句都可以执行,但第一条语句是错误的,不过只需将place改成name即可执行成功。

有了上述的SQL执行结果,我们将上述表格问答中的第三个例子进行Prompt Engineer,如下:

<The background information follows>:table `users` in Mysql:+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+SQL execution result:mysql> SELECT id, name, age FROM users WHERE place = 'USA' ORDER BY insert_time;+----+---------------+------+
| id | name          | age  |
+----+---------------+------+
|  1 | Jack          |   25 |
|  6 | ElasticSearch |   12 |
|  7 | Kibana        |   24 |
|  8 | Logstash      |   36 |
+----+---------------+------+Based on the background information, Answer the question: How many persons come from USA and what are their names and age?

看看GPT3.5模型的回答:

图片

回答正确!

以上仅仅是对LlamaIndex中使用Text to SQL技术的一种可能的实现方式的思考,故在此作为补充。

这篇关于基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044402

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log