基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL

2024-06-09 06:12

本文主要是介绍基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:《大模型面试宝典》(2024版) 发布!


本文将会介绍Text to SQL相关的概念,如何使用大模型SFT实现Text to SQL,最后介绍Text to SQL的应用场景。

引言

Text to SQL,又被称为Natural Language to SQL(简称NL2SQL),指的是将自然语言描述转化为数据库的SQL查询语句。由于数据库在我们日常工作生活中随处可见,因此Text to SQL技术也获得业界和学术界的不少研究与关注。

举个例子,比如在问题“What’s the population of New York city?”,那么我们在相关的某张表格(比如city表)中,对应的SQL语句应当为“SELECT POPULATION FROM city WHERE name = “New York””,此时数据库应当能执行该SQL语句。

常见的Text to SQL数据集有WIKISQL, Spider, ATIS, GeoQuery。以往已经有不少的NLP或者机器学习相关的技术涉及Text to SQL,但效果都比较一般。

接下来,我们将会介绍如何使用大模型SFT技术来实现Text to SQL,看看大模型的表现。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要交流、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:CSDN + 技术交流

SFT

我们使用HuggingFace上的b-mc2/sql-create-context数据集,该数据集只有78,577条训练数据,无测试集数据,字段为answer, question, context,其中answer为最终产生的SQL语句,question为用户问题,context为数据库表格创建语句。

比如其中在一个样本中,question为How many heads of the departments are older than 56 ?, context为CREATE TABLE head (age INTEGER), answer为SELECT COUNT(*) FROM head WHERE age > 56

我们使用谷歌开源的Gemma-7B模型对改数据集进行指令微调。以上述样本为例,对应的指令格式为:

\nBelow is an instruction that describes a task.Write a response that appropriately completes the request.\n### Instruction: How many heads of the departments are older than 56 ?\n### Database Schema:\nCREATE TABLE head (age INTEGER)\n### Response:\nSELECT COUNT(*) FROM head WHERE age > 56\n<eos>\n

其中为Gemma-7B模型的结束标志符。

使用trl可以很方面地对Gemma-7B模型进行SFT,代码如下:

from datasets import load_dataset
import torch
from peft import LoraConfig
from trl import SFTTrainer
from transformers import TrainingArguments
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig# Hugging Face model id
model_id = "./models/gemma-7b"# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(model_id,device_map="auto",torch_dtype=torch.bfloat16,quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right'train_dataset = load_dataset("json", data_files="sql-create-context.json")['train']
print(train_dataset[0])
print(f"train size: {len(train_dataset)}")# LoRA config based on QLoRA paper & Sebastian Raschka experiment
peft_config = LoraConfig(lora_alpha=16,lora_dropout=0.05,r=64,bias="none",target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj"],task_type="CAUSAL_LM", 
)args = TrainingArguments(output_dir="output",                    # directory to save and repository idnum_train_epochs=2,                     # number of training epochsper_device_train_batch_size=8,          # batch size per device during traininggradient_accumulation_steps=4,          # number of steps before performing a backward/update passgradient_checkpointing=True,            # use gradient checkpointing to save memoryoptim="paged_adamw_8bit",              save_strategy="epoch",logging_strategy="steps",logging_steps=10,                       # log every 10 stepsbf16=True,                              # use bfloat16 precisionlearning_rate=1e-4,                     # learning rate, based on QLoRA papermax_grad_norm=0.3,                      # max gradient norm based on QLoRA paperwarmup_ratio=0.1,                      # warmup ratio based on QLoRA paperlr_scheduler_type="constant",           # use constant learning rate schedulerpush_to_hub=False,                       # push model to hubreport_to="tensorboard",                # report metrics to tensorboard
)max_seq_length = 1024trainer = SFTTrainer(model=model,args=args,train_dataset=train_dataset,peft_config=peft_config,max_seq_length=max_seq_length,tokenizer=tokenizer,packing=False,dataset_text_field="text"
)trainer.train()
trainer.save_model()

训练完后,我们使用下面的脚本进行新样本的预测,代码如下:

from transformers import AutoModelForCausalLM, AutoTokenizerpeft_model_id = "./output/checkpoint-4911"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained("./models/gemma-7b")while True:question = input("enter a question: ")context = input("enter database schema: ")input_text = f"""
Below is an instruction that describes a task.Write a response that appropriately completes the request.
### Instruction: {question}
### Database Schema:
{context}
### Response:
"""encoding = tokenizer(input_text, return_tensors="pt").to("cuda")outputs = model.generate(**encoding, max_new_tokens=100, temperature=0.1, do_sample=True)generated_ids = outputs[:, encoding.input_ids.shape[1]:]generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)print("Instruction: ", input_text)print("SQL: ", generated_texts[0].strip())

为了验证改模型的效果,我们在新样本进行测试。

  • 例子1

直接从SQL测验网站进行测试,第一个例子为:

图片

测试题例子1

模型生成的SQL语句为:SELECT * FROM CITY WHERE COUNTRYCODE = "USA" AND POPULATION > 100000,成功运行!

图片

生成的SQL语句执行成功1

  • 例子2

第二个例子为:

图片

生成的SQL语句为SELECT CITY, STATE FROM STATION,也能执行成功!

  • 例子3

上述的两个较为简单,我们再来看个复杂点的例子。第三个例子为:

图片

生成的SQL语句为SELECT CITY FROM STATION WHERE SUBSTR(CITY, -1) NOT IN ('A', 'E', 'I', 'O', 'U') GROUP BY CITY,竟然能执行成功!

  • 例子4

第四例子为两个表格,需要对表格进行join,如下:

图片

生成的SQL语句为SELECT T1.NAME FROM CITY AS T1 JOIN COUNTRY AS T2 ON T1.COUNTRYCODE = T2.CODE WHERE T2.CONTINENT = 'Africa',竟然能执行成功!

以上只是找了几个比较好的例子,实际上还是有很多生成的SQL语句无法通过测试的。

在实际的Text to SQL应用场景中,需要调整system prompt,对指令进行更加详细的描述,比较加入表格、字段描述。同时,还需要质量更高、更贴近业务场景的训练数据,以及合适的大模型等,需要保证生成的SQL语句的可执行准确率。

表格问答应用

我们举个例子,来说明Text to SQL和大模型结合起来使用,在表格问答场景中能有更好的表现。

Mysql中的users表的描述:

+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+

表格中的所有数据:

+----+---------------+------+-------+---------------------+
| id | name          | age  | place | insert_time         |
+----+---------------+------+-------+---------------------+
|  1 | Jack          |   25 | USA   | 2023-12-23 23:48:48 |
|  2 | Green         |   26 | UK    | 2023-12-23 23:48:58 |
|  3 | Alex          |   31 | GER   | 2023-12-23 23:49:03 |
|  4 | Chen          |   52 | CHN   | 2023-12-23 23:49:08 |
|  5 | Zhang         |   42 | CHN   | 2023-12-23 23:49:13 |
|  6 | ElasticSearch |   12 | USA   | 2023-12-24 00:41:20 |
|  7 | Kibana        |   24 | USA   | 2023-12-24 00:41:37 |
|  8 | Logstash      |   36 | USA   | 2023-12-24 00:42:41 |
+----+---------------+------+-------+---------------------+

我们考虑以下四个问题:

  • How old is Chen?

  • Who is the oldest person and its age and place?

  • How many persons come from USA and what are their names and age?

  • Return the top 5 oldest person in descending order with their name and age.

  • what are the names that begins with J or E?

使用LlamaIndex工具中的Text-to-SQL QueryEngine对上述四个问题进行问答。代码如下:

# -*- coding: utf-8 -*-
# @file: nl2sql_test.py
# llama-index == 0.9.30
# SQLAlchemy==2.0.20
# PyMySQL == 1.1.0
from sqlalchemy import create_engine, textfrom llama_index import SQLDatabase, ServiceContext
from llama_index.llms import OpenAI
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEnginefrom llama_index.indices.struct_store.sql_query import (SQLTableRetrieverQueryEngine,
)
from llama_index.objects import (SQLTableNodeMapping,ObjectIndex,SQLTableSchema,
)
from llama_index import VectorStoreIndex
from llama_index.retrievers import NLSQLRetriever
from llama_index.query_engine import RetrieverQueryEnginellm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
service_context = ServiceContext.from_defaults(llm=llm)engine = create_engine("mysql+pymysql://root:root@localhost:3306/orm_test")
sql_database = SQLDatabase(engine, include_tables=["users"])# text-to-sql query engine, simple example
query_engine = NLSQLTableQueryEngine(sql_database=sql_database,tables=["users"]
)
query_str = "How old is Chen?"
response = query_engine.query(query_str)
print(response)
print('*' * 30, end='\n\n')# total size of table schema overflows context window size
# then use SQLTableNodeMapping
# set Logging to DEBUG for more detailed outputs
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [(SQLTableSchema(table_name="users"))
]  # add a SQLTableSchema for each tableobj_index = ObjectIndex.from_objects(table_schema_objs,table_node_mapping,VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(sql_database, obj_index.as_retriever(similarity_top_k=1)
)response = query_engine.query("Who is the oldest person and its age and place?")
print(response)
print('*' * 30, end='\n\n')response = query_engine.query("How many persons come from USA and what are their names and age?")
print(response.metadata)
print(response.metadata['result'])
print(response)
print('*' * 30, end='\n\n')# manually set context text
city_stats_text = ("This table gives information regarding the persons and their age and place.\n""The insert time means when the record was inserted into this table."
)table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [(SQLTableSchema(table_name="users", context_str=city_stats_text))
]# text-to-sql retriever
# SQL Retriever
# default retrieval (return_raw=True)
nl_sql_retriever = NLSQLRetriever(sql_database, tables=["users"], return_raw=True
)results = nl_sql_retriever.retrieve("Return the top 5 oldest person in descending order with their name and age."
)for n in results:print(n)
print('*' * 30, end='\n\n')# default retrieval (return_raw=False)
nl_sql_retriever = NLSQLRetriever(sql_database, tables=["users"], return_raw=False
)
results = nl_sql_retriever.retrieve("Return the top 5 oldest person in descending order with their name and age."
)# NOTE: all the content is in the metadata
for n in results:print(n, n.metadata)
print('*' * 30, end='\n\n')# compose SQL Retriever with RetrieverQueryEngine to synthesize a response
nl_sql_retriever = NLSQLRetriever(sql_database, tables=["users"], return_raw=True
)
query_engine = RetrieverQueryEngine.from_args(nl_sql_retriever)
queries = ["Return the top 5 oldest person in descending order with their name and age.","what are the names that begins with J or E?"]
for query in queries:response = query_engine.query(query)print(response)
print('*' * 30, end='\n\n')

对应的输出答案为(中间有部分省略):

Chen is 52 years old.
******************************
The oldest person is Chen, who is 52 years old and is from China.
******************************
There are four persons from the USA in the database. Their names are Jack, ElasticSearch, Kibana, and Logstash, and their ages are 25, 12, 24, and 36 respectively.
******************************
The top 5 oldest people in descending order with their names and ages are:
1. Chen, 52
2. Zhang, 42
3. Logstash, 36
4. Alex, 31
5. Green, 26
******************************
The names that begin with J or E are ElasticSearch and Jack.

看来Text to SQL对于表格问答场景有很大帮助。

补充

对于上述表格问答应用中的5个问题,我们使用Gemma-7B微调的Text to SQL模型进行回答,生成的SQL语句如下:

  • SELECT age FROM users WHERE place = ‘Chen’

  • SELECT id, name, age, place FROM users ORDER BY age DESC LIMIT 1

  • SELECT id, name, age FROM users WHERE place = ‘USA’ ORDER BY insert_time

  • SELECT id, name, age FROM users ORDER BY age DESC LIMIT 5

  • SELECT name FROM users WHERE name LIKE ‘J%’ OR name LIKE ‘E%’

将它们在MySQL中进行执行,结果如下:

图片

MySQL执行结果

所有的语句都可以执行,但第一条语句是错误的,不过只需将place改成name即可执行成功。

有了上述的SQL执行结果,我们将上述表格问答中的第三个例子进行Prompt Engineer,如下:

<The background information follows>:table `users` in Mysql:+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+SQL execution result:mysql> SELECT id, name, age FROM users WHERE place = 'USA' ORDER BY insert_time;+----+---------------+------+
| id | name          | age  |
+----+---------------+------+
|  1 | Jack          |   25 |
|  6 | ElasticSearch |   12 |
|  7 | Kibana        |   24 |
|  8 | Logstash      |   36 |
+----+---------------+------+Based on the background information, Answer the question: How many persons come from USA and what are their names and age?

看看GPT3.5模型的回答:

图片

回答正确!

以上仅仅是对LlamaIndex中使用Text to SQL技术的一种可能的实现方式的思考,故在此作为补充。

这篇关于基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044402

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操