一文搞懂大模型训练加速框架 DeepSpeed 的使用方法!

2024-06-08 12:04

本文主要是介绍一文搞懂大模型训练加速框架 DeepSpeed 的使用方法!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

合集:

《大模型面试宝典》(2024版) 正式发布!

保姆级学习指南:《Pytorch 实战宝典》来了


在AI领域,常见的深度学习框架TensorFlow、PyTorch和Keras无疑是开发者们的得力工具,但随着模型规模的急剧膨胀,这些传统框架在应对大模型时往往会显得力不从心。

比如Pytorch的分布式并行计算框架DDP(Distributed Data Parallel),尽管实现了数据并行,但是当模型大小超过单个GPU显存限制时显得捉襟见肘。此时,开发者往往只能手动进行复杂模型的参数拆分到各个GPU上,这无疑增加了研发的复杂性和门槛。

图片

然而,微软推出的一款框架——DeepSpeed,可解决这一局限。它通过将模型参数拆散分布到各个GPU上,以实现大模型的计算。这也意味着,我们可以利用更少的硬件资源训练更大的模型,不再受限于单个GPU的显存限制。

图片

安装DeepSpeed

pip install deepspeed

此外,还需要下载Pytorch,在官网选择自己对应的系统版本和环境,按照指示安装即可:

https://pytorch.org/get-started/locally/

图片

使用DeepSpeed

载入数据集
# 导入必要的库
import torch
import torchvision
import torchvision.transforms as transforms# 创建训练数据集
trainset = torchvision.datasets.CIFAR10(root='./data',train=True,download=True,transform=transform)
# 创建数据加载器,批量加载数据并处理数据加载的并行化
trainloader = torch.utils.data.DataLoader(trainset,# 每个批次包含16张图像batch_size=16,# 在每次迭代开始时随机打乱训练数据的顺序# 有助于模型训练shuffle=True,# 开启2个子进程来并行加载数据,提高效率num_workers=2)
# 创建测试数据集
testset = torchvision.datasets.CIFAR10(root='./data',train=False,download=True,transform=transform)
testloader = torch.utils.data.DataLoader(testset,batch_size=4,#测试数据通常不需要打乱顺序shuffle=False,num_workers=2)
创建模型
# 导入必要的PyTorch模块# 用于构建神经网络模型
import torch.nn as nn
# 提供了各种神经网络层的函数版本,如激活函数、损失函数等
import torch.nn.functional as F# 定义一个名为Net的类,继承自nn.Module
class Net(nn.Module):def __init__(self):super(Net, self).__init__()# 创建卷积层,参数:(输入通道数,输出通道数,卷积核大小)self.conv1 = nn.Conv2d(3, 6, 5)# 创建最大池化层,参数:(池化窗口大小,步长)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)# 创建全连接层(线性层),参数:(输入节点数,输出节点数)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)# 前向传播过程,即输入数据通过网络的流程def forward(self, x):# 使用F.relu应用ReLU激活函数# 使用self.pool进行最大池化x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))# 使用.view方法将池化后的特征图展平为一维向量,以便输入全连接层x = x.view(-1, 16 * 5 * 5)# 应用全连接层和ReLU激活函数,直到最后一层fc3,# 它不使用激活函数,直接输出分类结果x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
# 实例化网络模型
net = Net()
# 设置损失函数
# 多分类交叉熵损失函数,适用于监督学习中的分类任务
criterion = nn.CrossEntropyLoss()
初始化Deepspeed

DeepSpeed通过输入参数来启动训练,因此需要使用argparse解析参数。

import argparsedef add_argument():# 创建一个ArgumentParser对象,设置描述为"CIFAR"parser = argparse.ArgumentParser(description='CIFAR')# 设置训练时的批大小,默认值为32parser.add_argument('-b','--batch_size',default=32,type=int,help='mini-batch size (default: 32)')# 设置总的训练轮数,默认值为30parser.add_argument('-e','--epochs',default=30,type=int,help='number of total epochs (default: 30)')# 传递分布式训练中的排名,默认值为-1,表示未使用分布式训练parser.add_argument('--local_rank',type=int,default=-1,help='local rank passed from distributed launcher')# 设置输出日志信息的间隔,默认值为2000,即每2000次迭代打印一次日志parser.add_argument('--log-interval',type=int,default=2000,help="output logging information at a given interval")# 添加与DeepSpeed相关的配置参数parser = deepspeed.add_config_arguments(parser)# 解析命令行参数,返回一个Namespace对象,其中包含了所有定义的参数及其对应的值args = parser.parse_args()# 返回解析后的参数对象args,供后续的训练脚本使用return args

此外,模型初始化的时候除了参数,还需要model及其parameters,还有训练集:

# 启动DeepSpeed训练# 调用之前定义的add_argument函数,解析命令行参数,并将结果存储在args变量中
args = add_argument()
# 创建Net类的实例
net = Net()
# 筛选出模型中需要梯度计算的参数
parameters = filter(lambda p: p.requires_grad, net.parameters())
# 使用deepspeed.initialize初始化模型引擎、优化器、数据加载器以及其他可能的组件
model_engine, optimizer, trainloader, __ = deepspeed.initialize(args=args, model=net, model_parameters=parameters, training_data=trainset)
训练

注意local_rank是不需要管的参数,在后面启动模型训练的时候,DeepSpeed会自动给这个参数赋值。

# 定义进行2个epoch的训练
for epoch in range(2):running_loss = 0.0# 对于每个epoch,遍历训练数据加载器trainloader中的每一个小批量数据# 同时提供索引i和数据datafor i, data in enumerate(trainloader):# 将输入数据inputs和标签labels移动到当前GPU设备上,# 具体是哪个GPU由model_engine.local_rank决定,# 这对于分布式训练非常重要,确保数据被正确地分配到各个参与训练的GPU上inputs, labels = data[0].to(model_engine.local_rank), data[1].to(model_engine.local_rank)# 通过model_engine执行前向传播,计算模型预测输出outputs = model_engine(inputs)# 计算预测输出outputs与真实标签labels之间的损失loss = criterion(outputs, labels)# 反向传播计算梯度model_engine.backward(loss)# 更新模型参数model_engine.step()# 计算并累加每个小批量的损失值# 当达到args.log_interval指定的迭代次数时,打印平均损失值,# 然后重置running_loss为0,以便计算下一个区间的平均损失running_loss += loss.item()if i % args.log_interval == (args.log_interval - 1):print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / args.log_interval))running_loss = 0.0
测试

模型测试和模型训练的逻辑类似:

# 初始化计数器
# correct用于记录分类正确的样本数量
# total用于记录评估的总样本数
correct = 0
total = 0
# 上下文管理器,关闭梯度计算,
# 因为在验证阶段我们不需要计算梯度,这可以提高计算效率
with torch.no_grad():# 遍历测试数据加载器testloader中的每个小批量数据for data in testloader:# 获取当前小批量数据的图像和标签images, labels = data# 在当前GPU上执行模型的前向传播# 这里将图像数据移动到与模型相同的GPU上,然后通过模型得到预测输出outputs = net(images.to(model_engine.local_rank))# 找到每个样本的最大概率对应的类别_, predicted = torch.max(outputs.data, 1)# 增加总样本数,同时计算分类正确的样本数。# 注意,这里将标签也移动到与模型相同的GPU上进行比较total += labels.size(0)correct += (predicted == labels.to(model_engine.local_rank)).sum().item()
# 遍历完整个测试集后,计算并打印模型在测试集上的准确率
print('Accuracy of the network on the 10000 test images: %d %%' %(100 * correct / total))
编写模型参数

当前目录下新建一个config.json,写入调优器、训练batch等参数。

{// 每个GPU的训练批次大小"train_batch_size": 4,// 每隔多少步打印一次训练状态,这里是2000"steps_per_print": 2000,//优化器的配置"optimizer": {//优化器类型"type": "Adam",//Adam优化器的参数"params": {//学习率"lr": 0.001,// Adam的第一和第二动量参数"betas": [0.8,0.999],//优化器的稳定常数,防止除以零,这里是1e-8"eps": 1e-8,//权重衰减(L2正则化)"weight_decay": 3e-7}},// 学习率调度器的配置"scheduler": {//调度器类型"type": "WarmupLR","params": {//预热阶段的最小学习率,这里是0"warmup_min_lr": 0,// 预热阶段的最大学习率,这里是0.001"warmup_max_lr": 0.001,//预热阶段的步数,这里是1000"warmup_num_steps": 1000}},//是否开启时间分解功能,用于分析训练过程中的时间消耗。//这里是false,表示不开启"wall_clock_breakdown": false
}

以上即为利用DeepSpeed开发模型的过程,由此可见,和Pytorch开发模型的过程大同小异,就是在初始化的时候使用了DeepSpeed,并以输入参数的形式初始化。

测试代码

首先,使用环境变量控制GPU,例如机器有10张GPU,但是只使用6, 7, 8, 9号GPU,输入命令:

export CUDA_VISIBLE_DEVICES="6,7,8,9"

然后开始运行代码:

deepspeed test.py --deepspeed_config config.json

如下图所示即为开始运行。

图片

开始训练的时候DeepSpeed通常会打印更多的训练细节供用户监控,包括训练设置、性能统计和损失趋势,效果类似于:

图片

这也说明第一个Deepspeed模型已完成,下来可以开始大规模训练之路了!

这篇关于一文搞懂大模型训练加速框架 DeepSpeed 的使用方法!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042126

相关文章

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态