BubbleML: A Multiphase Multiphysics Dataset and Benchmarks for Machine Learning

本文主要是介绍BubbleML: A Multiphase Multiphysics Dataset and Benchmarks for Machine Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们使用以下六个分类标准:

  1. 研究方法: 这个标准根据如何收集和分析数据来区分研究方法。
    • 实验研究,如参考文献[64]中的研究,涉及在受控环境中研究人员操纵变量并观察结果的物理实验。这种方法对于收集真实世界的数据很有价值,但可能成本高且耗时。
    • 模拟研究利用计算模型来模拟相变现象。本文介绍的 BubbleML 数据集就是这种方法的一个例子,它提供了一种经济有效的方法来生成具有精确地面真实信息的大量数据。
    • 数据驱动或机器学习研究利用算法来分析实验或模拟产生的数据。这种方法可以发现模式,进行预测和优化流程,如本文中使用机器学习进行光流分析和神经 PDE 求解器所展示的那样。
  2. 研究重点: 这个标准根据研究的主要目标对研究进行分类。
    • 基础研究旨在加深我们对相变现象的潜在物理学的理解。例如,研究可能会调查气泡形成、生长和破裂的机制,以及所涉及的复杂传热过程。
    • 应用研究侧重于将这种基础知识转化为实际应用。这可能涉及为电子产品设计更有效的冷却系统、优化工业过程中的热传递或开发创新的能源解决方案。
  3. 数据类型: 这个标准根据所使用数据的来源和性质对研究进行分类。
    • 实验数据来自真实世界的实验,通常包括温度、压力、流速和视觉观察的测量。
    • 模拟数据,如 BubbleML 数据集,是通过计算机模拟生成的,可以提供对各种物理量及其演变的详细见解。
    • 混合数据结合了实验

这篇关于BubbleML: A Multiphase Multiphysics Dataset and Benchmarks for Machine Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041460

相关文章

HTML5自定义属性对象Dataset

原文转自HTML5自定义属性对象Dataset简介 一、html5 自定义属性介绍 之前翻译的“你必须知道的28个HTML5特征、窍门和技术”一文中对于HTML5中自定义合法属性data-已经做过些介绍,就是在HTML5中我们可以使用data-前缀设置我们需要的自定义属性,来进行一些数据的存放,例如我们要在一个文字按钮上存放相对应的id: <a href="javascript:" d

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

ZOJ 3324 Machine(线段树区间合并)

这道题网上很多代码是错误的,由于后台数据水,他们可以AC。 比如这组数据 10 3 p 0 9 r 0 5 r 6 9 输出应该是 0 1 1 所以有的人直接记录该区间是否被覆盖过的方法是错误的 正确方法应该是记录这段区间的最小高度(就是最接近初始位置的高度),和最小高度对应的最长左区间和右区间 开一个sum记录这段区间最小高度的块数,min_v 记录该区间最小高度 cover

SparkRDD转DataSet/DataFrame的一个深坑

大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! By  大数据技术与架构 场景描述:本文是根据读者反馈的一个问题总结而成的。 关键词:Saprk RDD 原需求:希望在map函数中将每一

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

rdd,dataframe,dataset之间的区别

在spark中,RDD、DataFrame、Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势   共性: 1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于