rdd,dataframe,dataset之间的区别

2024-09-06 06:38

本文主要是介绍rdd,dataframe,dataset之间的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在spark中,RDD、DataFrame、Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势

 

共性:

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,极端情况下,如果代码里面有创建、转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如

1
2
3
4
5
6
7
8
val  sparkconf  =  new  SparkConf().setMaster( "local" ).setAppName( "test" ).set( "spark.port.maxRetries" , "1000" )
val  spark  =  SparkSession.builder().config(sparkconf).getOrCreate()
val  rdd = spark.sparkContext.parallelize(Seq(( "a" 1 ), ( "b" 1 ), ( "a" 1 )))
rdd.map{line = >
   println( "运行" )
   line. _ 1
}

map中的println("运行")并不会运行

3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出

4、三者都有partition的概念,如

1
2
3
4
5
6
7
8
var  predata = data.repartition( 24 ).mapPartitions{
       PartLine  = > {
         PartLine.map{
           line  = >
              println(“转换操作”)
                             }
                          }

这样对每一个分区进行操作时,就跟在操作数组一样,不但数据量比较小,而且可以方便的将map中的运算结果拿出来,如果直接用map,map中对外面的操作是无效的,如

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
val  rdd = spark.sparkContext.parallelize(Seq(( "a" 1 ), ( "b" 1 ), ( "a" 1 )))
     var  flag = 0
     val  test = rdd.map{line = >
       println( "运行" )
       flag+ = 1
       println(flag)
       line. _ 1
     }
println(test.count)
println(flag)
     /**
     运行
     1
     运行
     2
     运行
     3
     3
     0
    * */

不使用partition时,对map之外的操作无法对map之外的变量造成影响

5、三者有许多共同的函数,如filter,排序等

6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持

1
2
import  spark.implicits. _
//这里的spark是SparkSession的变量名

7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型

DataFrame:

1
2
3
4
5
6
7
testDF.map{
       case  Row(col 1 : String,col 2 : Int) = >
         println(col 1 );println(col 2 )
         col 1
       case  _= >
         ""
     }

为了提高稳健性,最好后面有一个_通配操作,这里提供了DataFrame一个解析字段的方法

Dataset:

1
2
3
4
5
6
7
8
case  class  Coltest(col 1 : String,col 2 : Int) extends  Serializable  //定义字段名和类型
     testDS.map{
       case  Coltest(col 1 : String,col 2 : Int) = >
         println(col 1 );println(col 2 )
         col 1
       case  _= >
         ""
     }

  

区别:

RDD:

1、RDD一般和spark mlib同时使用

2、RDD不支持sparksql操作

DataFrame:

1、与RDD和Dataset不同,DataFrame每一行的类型固定为Row,只有通过解析才能获取各个字段的值,如

1
2
3
4
5
testDF.foreach{
   line  = >
     val  col 1 = line.getAs[String]( "col1" )
     val  col 2 = line.getAs[String]( "col2" )
}

每一列的值没法直接访问

2、DataFrame与Dataset一般与spark ml同时使用

3、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如

1
2
dataDF.createOrReplaceTempView( "tmp" )
spark.sql( "select  ROW,DATE from tmp where DATE is not null order by DATE" ).show( 100 , false )

4、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然

1
2
3
4
5
6
//保存
val  saveoptions  =  Map( "header"  ->  "true" "delimiter"  ->  "\t" "path"  ->  "hdfs://172.xx.xx.xx:9000/test" )
datawDF.write.format( "com.databricks.spark.csv" ).mode(SaveMode.Overwrite).options(saveoptions).save()
//读取
val  options  =  Map( "header"  ->  "true" "delimiter"  ->  "\t" "path"  ->  "hdfs://172.xx.xx.xx:9000/test" )
val  datarDF =  spark.read.options(options).format( "com.databricks.spark.csv" ).load()

利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定

Dataset:

这里主要对比Dataset和DataFrame,因为Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同

DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段

而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
case  class  Coltest(col 1 : String,col 2 : Int) extends  Serializable  //定义字段名和类型
/**
       rdd
       ("a", 1)
       ("b", 1)
       ("a", 1)
       * */
val  test :  Dataset[Coltest] = rdd.map{line = >
       Coltest(line. _ 1 ,line. _ 2 )
     }.toDS
test.map{
       line = >
         println(line.col 1 )
         println(line.col 2 )
     }

可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题

转化:

RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换

DataFrame/Dataset转RDD:

这个转换很简单

1
2
val  rdd 1 = testDF.rdd
val  rdd 2 = testDS.rdd

RDD转DataFrame:

1
2
3
4
import  spark.implicits. _
val  testDF  =  rdd.map {line = >
       (line. _ 1 ,line. _ 2 )
     }.toDF( "col1" , "col2" )

一般用元组把一行的数据写在一起,然后在toDF中指定字段名

RDD转Dataset:

1
2
3
4
5
import  spark.implicits. _
case  class  Coltest(col 1 : String,col 2 : Int) extends  Serializable  //定义字段名和类型
val  testDS  =  rdd.map {line = >
       Coltest(line. _ 1 ,line. _ 2 )
     }.toDS

可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可

Dataset转DataFrame:

这个也很简单,因为只是把case class封装成Row

1
2
import  spark.implicits. _
val  testDF  =  testDS.toDF

DataFrame转Dataset:

1
2
3
import  spark.implicits. _
case  class  Coltest(col 1 : String,col 2 : Int) extends  Serializable  //定义字段名和类型
val  testDS  =  testDF.as[Coltest]

这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便

特别注意:

在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用

 

这篇关于rdd,dataframe,dataset之间的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141279

相关文章

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

native和static native区别

本文基于Hello JNI  如有疑惑,请看之前几篇文章。 native 与 static native java中 public native String helloJni();public native static String helloJniStatic();1212 JNI中 JNIEXPORT jstring JNICALL Java_com_test_g

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

Android fill_parent、match_parent、wrap_content三者的作用及区别

这三个属性都是用来适应视图的水平或者垂直大小,以视图的内容或尺寸为基础的布局,比精确的指定视图的范围更加方便。 1、fill_parent 设置一个视图的布局为fill_parent将强制性的使视图扩展至它父元素的大小 2、match_parent 和fill_parent一样,从字面上的意思match_parent更贴切一些,于是从2.2开始,两个属性都可以使用,但2.3版本以后的建议使

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

javascript中break与continue的区别

在javascript中,break是结束整个循环,break下面的语句不再执行了 for(let i=1;i<=5;i++){if(i===3){break}document.write(i) } 上面的代码中,当i=1时,执行打印输出语句,当i=2时,执行打印输出语句,当i=3时,遇到break了,整个循环就结束了。 执行结果是12 continue语句是停止当前循环,返回从头开始。

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令 在日常的工作中由于各种原因,会出现这样一种情况,某些项目并没有打包至mvnrepository。如果采用原始直接打包放到lib目录的方式进行处理,便对项目的管理带来一些不必要的麻烦。例如版本升级后需要重新打包并,替换原有jar包等等一些额外的工作量和麻烦。为了避免这些不必要的麻烦,通常我们

ActiveMQ—Queue与Topic区别

Queue与Topic区别 转自:http://blog.csdn.net/qq_21033663/article/details/52458305 队列(Queue)和主题(Topic)是JMS支持的两种消息传递模型:         1、点对点(point-to-point,简称PTP)Queue消息传递模型:         通过该消息传递模型,一个应用程序(即消息生产者)可以

深入探讨:ECMAScript与JavaScript的区别

在前端开发的世界中,JavaScript无疑是最受欢迎的编程语言之一。然而,很多开发者在使用JavaScript时,可能并不清楚ECMAScript与JavaScript之间的关系和区别。本文将深入探讨这两者的不同之处,并通过案例帮助大家更好地理解。 一、什么是ECMAScript? ECMAScript(简称ES)是一种脚本语言的标准,由ECMA国际组织制定。它定义了语言的语法、类型、语句、

linux中使用rust语言在不同进程之间通信

第一种:使用mmap映射相同文件 fn main() {let pid = std::process::id();println!(