本文主要是介绍交易中的预测和跟随,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
任何的交易决策,一定是基于某种推理关系的,这种推理关系是基于t时刻之前的状态,得到t时刻之后的结果,我们基于这种推理关系,根据当前的状态,形成了未来结果的某种预期,然后基于这种预期采取相应的决策,这个是没有问题的。关键在于这个推理关系的结构和特征是怎么样的,不同的推理关系,对应着我们所谓的预测和跟随。
决策模型(类比RNN类神经网络模型)
量化模型:
输入:可以很多,相对高质量
模型结构:隐层可以很长,也可以较短,性能和结果的均衡,其中隐层长度可以简单认为决策的逻辑链条长度
优化目标:收益误差,可以认为综合了胜率和盈亏比
普通散户:
输入:很有限,基本而有限的量价数据和各种消息,其中消息包含着各种偏差,质量低下
模型结构:隐层,也就是决策链条短,模型结构简单
优化目标:胜率权重很大
主观交易高手:
输入:很有限的量价数据,以及各种消息,相比于普通散户差别不大
模型结构:相比于量化和普通散户,模型架构不一样,可以通过少量的稀疏的数据,训练得到很好的结果,决策链条往往较长
优化目标:盈亏比权重大
任何模型,输入更新,输出就可以更新,只是大部分时候,输出的预测,其确定性是不高的,我们称这种确定性不高的预测为弱关系,把确定性较高的预测为强关系。
从优化目标看,量化模型输出的是具体价格预测,散户输出的更多是涨跌预测,高手输出的更多是盈亏比预测。
量化模型价格预测综合了胜率和盈亏比,由于其可以规模化、自动化、非情绪化,因此其可以进行大规模的多次的交易,样本越大,就可以越向统计结果收敛,那么只要其具备统计优势,就是一个可以稳定盈利的模型,即使是弱预测、弱关系。
主观交易者,不具备量化模型的规模化分析和交易能力,因此注定无法通过弱预测实现稳定盈利,因为弱关系是量化模型的优势,主观交易的弱关系,现在已经很难有正期望,无论是从模式还是执行层面,即使其模式本身可能具备正期望,也不考虑执行上的弱势,只要无法稳定,只要账户波动大,那么其情绪化特点会对其模型造成极大干扰,因为情绪和模型共处一个大脑,并不独立,这种干扰无法避免,即使通过自我训练,也只能尽量降低,无法杜绝。而且这种干扰往往是负面干扰,因为人性弱点是共性,这种共性形成了趋同,趋同是很好的alpha来源,一旦人性暴露,就会称为alpha收割机们的鱼肉。
因此,主观交易者,应该选择的盈利路径,一定是高确定性的方式,也就是强关系、强预测。强关系,意味着其信号次数一定是不多的,因为次数多的强关系,就会增加被发现的概率,时间一长,一定会被充分发掘,从而会变成弱关系。因此,主观高手,其出手次数一定是不多的,如果你频繁交易了,随意交易了,你就该反思了,你在进行毫无优势的,注定要亏损的弱关系交易。
强关系的特点,除了次数少,其输入稀疏但是很重要,也就是在训练的时候,对一些关键输入赋予了较大的权重,而且模型结构(决策链条)更加的准确,输入的相对位置更加准确,对应着现实中更加准确的逻辑决策链条,因此,强关系的决策过程,往往是需要经过一系列前置条件的,类似一颗决策树,不断分叉,可能每个节点单独拎出来,直接指向最终目标的预测都是弱预测,但是其贯穿起来,达到最终的叶子目标节点,其就是一个强关系,我们可以把这种强关系在现实中映射为一种方案,即当某个节点出现了某个状态,那么我就要看下一个节点的状态,然后根据其状态,再看下一个节点,直到可以做出最终的决策,这个实际上就是一种计划、一种方案,而不是直接通过第一个节点或者前几个节点就做出决策了,这样关系就会不够强。那么自然的,这种强关系由于前置条件比较多,自然有效的信号次数是比较少的,这是完全合理的。
强关系的训练优化目标更多是盈亏比,因为胜率目标本身是很难作为强关系存在的,价格的涨跌,其决定因素太多了,随机性也比较强,其不具备强关系的属性,也就是很难具备较高的确定性,而且这种需要分析多因素的关系,优势在量化,而量化的特点就是消灭一切能够消灭的强关系,因此,胜率很难作为强关系的优化目标。
高盈亏比的特点是什么,就是单次风险小,高盈亏比实际上就是一种风控为先的交易哲学。这对于主观交易者来讲尤其重要,只有控制住了风险,才能保持情绪稳定,才能更好的执行交易计划,主观交易者如果情绪不稳定,那再好的计划失去了实现的基础;只有控制住了风险,才能比较长久的在市场中存活下去,才有足够的时间去训练优化自己,如果没有足够的时间,那再好的潜质,也就没有了爆发出来的基础。因此,主观交易者,要视盈亏比为交易系统的核心,把高盈亏比作为最高的交易哲学和原则之一,这样才更有可能走出来。
综上,我们知道,主观交易,要想稳定盈利,只能依靠强关系,而且是量化很难消灭的强关系,那么就基本只剩下盈亏比为优化目标的强关系。什么是量化难以消灭的强关系,就是不能只依赖量价数据,样本稀疏,决策链条相对复杂的强关系,可以通过少量稀疏样本,准确的学习到相对复杂的决策模型,这种模型结构,我想也只有人类的大脑才能做到了,只要训练到位,交易世界里,我相信主观高手一定是最强的,毕竟人脑才是最强大的神经网络模型。
最后回到文章标题,通俗语境中的预测和跟随是什么意思,为什么很多高手说,不做预测,只跟随?我想现在可以给出答案了,预测就是弱关系,主观交易不能依据弱关系形成交易决策,跟随是强关系,是弱关系的逻辑连贯,形成的一种高盈亏比的交易计划或者方案。当然,严格来讲,强弱关系,本质都包含了预测,只是弱关系中,预测差不多就是终点了,重点在于选择最大概率那个预测指导交易,而强关系中,预测的是一种概率分布,更重要的是概率分布下每种情况的后续节点的交易计划,而且每种交易计划,都要具备高盈亏比,因为这是训练优化的目标,主观上我们当然可以对概率较高的节点计划准备充分一些。所以不做预测只做跟随,想表达的意思,就是我们不能依据弱关系弱预测去进行交易,因为主观上这很难稳定盈利,而是应该着重在高盈亏比的交易计划上,跟随指的就是通过弱关系更新我们的后验概率分布,然后选择相应节点下对应的高盈亏比的交易计划,我们日常训练优化我们的模式的时候,重点就是强化这种交易计划,从而可以快速准确的对弱关系做出具备高盈亏比确定性的应对。
这篇关于交易中的预测和跟随的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!