交易中的预测和跟随

2024-06-07 01:28
文章标签 交易 预测 跟随

本文主要是介绍交易中的预测和跟随,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        任何的交易决策,一定是基于某种推理关系的,这种推理关系是基于t时刻之前的状态,得到t时刻之后的结果,我们基于这种推理关系,根据当前的状态,形成了未来结果的某种预期,然后基于这种预期采取相应的决策,这个是没有问题的。关键在于这个推理关系的结构和特征是怎么样的,不同的推理关系,对应着我们所谓的预测和跟随。

决策模型(类比RNN类神经网络模型)

量化模型:

输入:可以很多,相对高质量

模型结构:隐层可以很长,也可以较短,性能和结果的均衡,其中隐层长度可以简单认为决策的逻辑链条长度

优化目标:收益误差,可以认为综合了胜率和盈亏比

普通散户:

输入:很有限,基本而有限的量价数据和各种消息,其中消息包含着各种偏差,质量低下

模型结构:隐层,也就是决策链条短,模型结构简单

优化目标:胜率权重很大

主观交易高手:

输入:很有限的量价数据,以及各种消息,相比于普通散户差别不大

模型结构:相比于量化和普通散户,模型架构不一样,可以通过少量的稀疏的数据,训练得到很好的结果,决策链条往往较长

优化目标:盈亏比权重大

        任何模型,输入更新,输出就可以更新,只是大部分时候,输出的预测,其确定性是不高的,我们称这种确定性不高的预测为弱关系,把确定性较高的预测为强关系。

        从优化目标看,量化模型输出的是具体价格预测,散户输出的更多是涨跌预测,高手输出的更多是盈亏比预测。

        量化模型价格预测综合了胜率和盈亏比,由于其可以规模化、自动化、非情绪化,因此其可以进行大规模的多次的交易,样本越大,就可以越向统计结果收敛,那么只要其具备统计优势,就是一个可以稳定盈利的模型,即使是弱预测、弱关系。

        主观交易者,不具备量化模型的规模化分析和交易能力,因此注定无法通过弱预测实现稳定盈利,因为弱关系是量化模型的优势,主观交易的弱关系,现在已经很难有正期望,无论是从模式还是执行层面,即使其模式本身可能具备正期望,也不考虑执行上的弱势,只要无法稳定,只要账户波动大,那么其情绪化特点会对其模型造成极大干扰,因为情绪和模型共处一个大脑,并不独立,这种干扰无法避免,即使通过自我训练,也只能尽量降低,无法杜绝。而且这种干扰往往是负面干扰,因为人性弱点是共性,这种共性形成了趋同,趋同是很好的alpha来源,一旦人性暴露,就会称为alpha收割机们的鱼肉。

        因此,主观交易者,应该选择的盈利路径,一定是高确定性的方式,也就是强关系、强预测。强关系,意味着其信号次数一定是不多的,因为次数多的强关系,就会增加被发现的概率,时间一长,一定会被充分发掘,从而会变成弱关系。因此,主观高手,其出手次数一定是不多的,如果你频繁交易了,随意交易了,你就该反思了,你在进行毫无优势的,注定要亏损的弱关系交易。

        强关系的特点,除了次数少,其输入稀疏但是很重要,也就是在训练的时候,对一些关键输入赋予了较大的权重,而且模型结构(决策链条)更加的准确,输入的相对位置更加准确,对应着现实中更加准确的逻辑决策链条,因此,强关系的决策过程,往往是需要经过一系列前置条件的,类似一颗决策树,不断分叉,可能每个节点单独拎出来,直接指向最终目标的预测都是弱预测,但是其贯穿起来,达到最终的叶子目标节点,其就是一个强关系,我们可以把这种强关系在现实中映射为一种方案,即当某个节点出现了某个状态,那么我就要看下一个节点的状态,然后根据其状态,再看下一个节点,直到可以做出最终的决策,这个实际上就是一种计划、一种方案,而不是直接通过第一个节点或者前几个节点就做出决策了,这样关系就会不够强。那么自然的,这种强关系由于前置条件比较多,自然有效的信号次数是比较少的,这是完全合理的。

        强关系的训练优化目标更多是盈亏比,因为胜率目标本身是很难作为强关系存在的,价格的涨跌,其决定因素太多了,随机性也比较强,其不具备强关系的属性,也就是很难具备较高的确定性,而且这种需要分析多因素的关系,优势在量化,而量化的特点就是消灭一切能够消灭的强关系,因此,胜率很难作为强关系的优化目标。

        高盈亏比的特点是什么,就是单次风险小,高盈亏比实际上就是一种风控为先的交易哲学。这对于主观交易者来讲尤其重要,只有控制住了风险,才能保持情绪稳定,才能更好的执行交易计划,主观交易者如果情绪不稳定,那再好的计划失去了实现的基础;只有控制住了风险,才能比较长久的在市场中存活下去,才有足够的时间去训练优化自己,如果没有足够的时间,那再好的潜质,也就没有了爆发出来的基础。因此,主观交易者,要视盈亏比为交易系统的核心,把高盈亏比作为最高的交易哲学和原则之一,这样才更有可能走出来。

        综上,我们知道,主观交易,要想稳定盈利,只能依靠强关系,而且是量化很难消灭的强关系,那么就基本只剩下盈亏比为优化目标的强关系。什么是量化难以消灭的强关系,就是不能只依赖量价数据,样本稀疏,决策链条相对复杂的强关系,可以通过少量稀疏样本,准确的学习到相对复杂的决策模型,这种模型结构,我想也只有人类的大脑才能做到了,只要训练到位,交易世界里,我相信主观高手一定是最强的,毕竟人脑才是最强大的神经网络模型。

        最后回到文章标题,通俗语境中的预测和跟随是什么意思,为什么很多高手说,不做预测,只跟随?我想现在可以给出答案了,预测就是弱关系,主观交易不能依据弱关系形成交易决策,跟随是强关系,是弱关系的逻辑连贯,形成的一种高盈亏比的交易计划或者方案。当然,严格来讲,强弱关系,本质都包含了预测,只是弱关系中,预测差不多就是终点了,重点在于选择最大概率那个预测指导交易,而强关系中,预测的是一种概率分布,更重要的是概率分布下每种情况的后续节点的交易计划,而且每种交易计划,都要具备高盈亏比,因为这是训练优化的目标,主观上我们当然可以对概率较高的节点计划准备充分一些。所以不做预测只做跟随,想表达的意思,就是我们不能依据弱关系弱预测去进行交易,因为主观上这很难稳定盈利,而是应该着重在高盈亏比的交易计划上,跟随指的就是通过弱关系更新我们的后验概率分布,然后选择相应节点下对应的高盈亏比的交易计划,我们日常训练优化我们的模式的时候,重点就是强化这种交易计划,从而可以快速准确的对弱关系做出具备高盈亏比确定性的应对。

这篇关于交易中的预测和跟随的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037795

相关文章

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

量化交易面试:什么是连贯风险度量?

连贯风险度量(Coherent Risk Measures)是金融风险管理中的一个重要概念,旨在提供一种合理且一致的方式来评估和量化风险。连贯风险度量的提出是为了克服传统风险度量方法(如VaR,风险价值)的一些局限性。以下是对连贯风险度量的详细解释: 基本概念: 连贯风险度量是指满足特定公理的风险度量方法,这些公理确保了风险评估的一致性和合理性。 这些公理包括:非负性、次可加性、同质性和单调

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测 目录 多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据) 2.SS

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode:486. 预测赢家 一、递归 注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出 目录 回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 Matlab实现PSO-LSTM多变量回归预测 1.input和outpu

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

【销售预测 ARIMA模型】ARIMA模型预测每天的销售额

输入数据txt格式: 2017-05-01 100 2017-05-02 200 ……. python 实现arima: # encoding: utf-8"""function:时间序列预测ARIMA模型预测每天的销售额author:donglidate:2018-05-25"""# 导入库import numpy as np # numpy库from statsmode