second order system analysis 自动控制原理 二阶系统的matlab仿真分析

本文主要是介绍second order system analysis 自动控制原理 二阶系统的matlab仿真分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二阶系统的matlab仿真分析





二阶系统的matlab仿真分析如上图。

根据二阶函数对阶跃函数的响应函数,我们对参数epsilon进行分析讨论


由于临界阻尼和无阻尼的情况在现实生活中比较难出现,二阶方程的根几乎不可能恰好,实部为0,或者两个实部相同且虚部为0. 于是,并为对以上两种较特殊的情况进行讨论。
选择欠阻尼和过阻尼两种情况进行分析讨论。

可以看出,当epsilon比较小的时候,响应时间短,且伴随有明显的超调。
随着epsilon的增大,超调明显降低,epsilon在0.7(恰巧工程上的最佳阻尼系数是0.7!)之后就没有超调了。随着epsilon的增大响应时间变得越来越长。



Wn = (1/T);
二阶方程的根
实部:X = -epsilon_0*Wn
虚部:Y = j*(Wn ).*sqrt(1-(epsilon_0).^2)

下图是上面十条曲线对应的根分布



可以看出图中所有的点均位于Y轴左侧,说明最终响应都将收敛
虚部为0的点很好的对应了过阻尼状态(同样颜色的是一对实根),图中关于X轴对称的点,系统处于欠阻尼状态

下图是上升时间和阻尼系数epsilon之间的关系(欠阻尼状态下)



可以看出,随着阻尼系数的增大,上升时间变长!

matlab和本文相关代码:

%%*************************************************************
% code writer: EOF
% code date:2014.03.18
% e-mail: jasonleaster@gmail.com
% code purpose : 
%           I just want to share with someone who is interesting
% in adaptive control. This code is to help people to understand
% second order system.
%%**************************************************************
clear all
clc
syms s f t m;
K01 = 1;
K02 = 1;
K0 = (K01*K02)./(1+K01*K02);
hold on;
figure(1);
T0 = 1;
for epsilon_0 = 0.1:0.2:2T = T0./(1+K0);
%     epsilon_0 = 0.5*(1/(K01*K02*T0));epsilon = epsilon_0./(1+K0);K = K0/(1+K0);f = (K./((T.^2).*(s.^2)+2*epsilon_0.*T.*s+K0)).*(1./s);m = ilaplace(f);ezplot(m,[0,120]);axis([0 60 0 1.2]);
end
legend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9');
hold off;
figure(2);
hold on;
for epsilon_0 = 0.1:0.2:2if epsilon_0 <1plot(-epsilon_0.*(1./T),(1./T).*sqrt(1-(epsilon_0).^2),'*');plot(-epsilon_0.*(1./T),-(1./T).*sqrt(1-(epsilon_0).^2),'*');elseif abs(epsilon_0-1.1) < 0.1  plot(-epsilon_0.*(1./T)+(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','r');plot(-epsilon_0.*(1./T)-(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','r');elseif abs(epsilon_0-1.3) < 0.1 plot(-epsilon_0.*(1./T)+(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','g');plot(-epsilon_0.*(1./T)-(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','g');elseif abs(epsilon_0-1.5) < 0.1 plot(-epsilon_0.*(1./T)+(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','b');plot(-epsilon_0.*(1./T)-(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','b');elseif abs(epsilon_0-1.7) < 0.1 plot(-epsilon_0.*(1./T)+(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','y');plot(-epsilon_0.*(1./T)-(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','y');elseif abs(epsilon_0-1.9) < 0.1 plot(-epsilon_0.*(1./T)+(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','k');plot(-epsilon_0.*(1./T)-(1./T).*sqrt((epsilon_0).^2-1),0,'*','Color','k');end
end
axis([-6 1 -3 3]);
hold off;
figure(3);
hold on;
Wn = (1./T);
for epsilon_0 = 0.1:0.2:2 Wd = Wn.*(1-(epsilon_0).^2);if epsilon_0 < 1belta = acos(epsilon_0);tr = (pi-belta)./Wd;plot(epsilon_0*10,tr,'*');end
end
legend('epsilon = 0.1','epsilon = 0.3','epsilon = 0.5','epsilon = 0.7','epsilon = 0.9');


这篇关于second order system analysis 自动控制原理 二阶系统的matlab仿真分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035827

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建