仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法

本文主要是介绍仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到一个有意思的题目:仅使用python的标准库,完成一个小批量梯度下降的线性回归算法

平常使用numpy这样的计算库习惯了,只允许使用标准库还有点不习惯,下面就使用这个过程来写一个。

import random
from typing import List# 生成测试数据
def generate_data(num_samples: int, weights: List[float], bias: float, noise=0.1) -> (List[List[float]], List[float]):X = [[random.uniform(-10, 10) for _ in range(len(weights))] for _ in range(num_samples)]y = [sum(w * x for w, x in zip(weights, x_i)) + bias + random.uniform(-noise, noise) for x_i in X]return X, y# 计算损失
def mse(y_true: List[float], y_pred: List[float]):return 0.5 * sum((yt - yp) for yt, yp in zip(y_true, y_pred)) ** 2# 将矩阵转置
def transpose(mat: List[List[float]]):row, col = len(mat), len(mat[0])# 固定列,访问行result = [[mat[r][c] for r in range(row)] for c in range(col)]return result# 计算矩阵乘法
def matmul(mat: List[List[float]], vec: List[float]):return [sum(r * c for r, c in zip(row, vec)) for row in mat]# 计算梯度
def compute_grad(y_true_batch: List[float], y_pred_batch: List[float], x_batch: List[List[float]]):batch_size = len(y_true_batch)residual = [yt - yp for yt, yp in zip(y_true_batch, y_pred_batch)]# 根据 y = x @ w + b# grad_w = -x.T @ residualgrad_w = matmul(transpose(x_batch), residual)grad_w = [-gw / batch_size for gw in grad_w]grad_b = -sum(residual) / batch_size# grad_w: List[float]# grad_b: floatreturn grad_w, grad_b# 开启训练
def train():lr = 0.01epochs = 50batch_size = 16dim_feat = 3num_samples = 500weights = [random.random() * 0.1 for _ in range(dim_feat)]bias = random.random() * 0.1print('original params')print('w:', weights)print('b:', bias)X, y = generate_data(num_samples, weights, bias, noise=0.1)for epoch in range(epochs):for i in range(0, num_samples, batch_size):x_batch = X[i:i+batch_size]y_batch = y[i:i+batch_size]y_pred = [item + bias for item in matmul(x_batch, weights)]loss = mse(y_batch, y_pred)grad_w, grad_b = compute_grad(y_batch, y_pred, x_batch)weights = [w - lr * gw for w, gw in zip(weights, grad_w)]bias -= lr * grad_bprint(f'Epoch: {epoch + 1}, Loss = {loss:.3f}')print('trained params')print('w:', weights)print('b:', bias)train()

输出结果如下

original params
w: [0.04845598598148951, 0.007741816562531545, 0.02436678108587098]
b: 0.01644073086522535
Epoch: 1, Loss = 0.000
Epoch: 2, Loss = 0.000
Epoch: 3, Loss = 0.000
Epoch: 4, Loss = 0.000
Epoch: 5, Loss = 0.000
Epoch: 6, Loss = 0.000
Epoch: 7, Loss = 0.000
Epoch: 8, Loss = 0.000
Epoch: 9, Loss = 0.000
Epoch: 10, Loss = 0.000
Epoch: 11, Loss = 0.000
Epoch: 12, Loss = 0.000
Epoch: 13, Loss = 0.000
Epoch: 14, Loss = 0.000
Epoch: 15, Loss = 0.000
Epoch: 16, Loss = 0.000
Epoch: 17, Loss = 0.000
Epoch: 18, Loss = 0.000
Epoch: 19, Loss = 0.000
Epoch: 20, Loss = 0.000
Epoch: 21, Loss = 0.000
Epoch: 22, Loss = 0.000
Epoch: 23, Loss = 0.000
Epoch: 24, Loss = 0.000
Epoch: 25, Loss = 0.000
Epoch: 26, Loss = 0.000
Epoch: 27, Loss = 0.000
Epoch: 28, Loss = 0.000
Epoch: 29, Loss = 0.000
Epoch: 30, Loss = 0.000
Epoch: 31, Loss = 0.000
Epoch: 32, Loss = 0.000
Epoch: 33, Loss = 0.000
Epoch: 34, Loss = 0.000
Epoch: 35, Loss = 0.000
Epoch: 36, Loss = 0.000
Epoch: 37, Loss = 0.000
Epoch: 38, Loss = 0.000
Epoch: 39, Loss = 0.000
Epoch: 40, Loss = 0.000
Epoch: 41, Loss = 0.000
Epoch: 42, Loss = 0.000
Epoch: 43, Loss = 0.000
Epoch: 44, Loss = 0.000
Epoch: 45, Loss = 0.000
Epoch: 46, Loss = 0.000
Epoch: 47, Loss = 0.000
Epoch: 48, Loss = 0.000
Epoch: 49, Loss = 0.000
Epoch: 50, Loss = 0.000
trained params
w: [0.05073234817652038, 0.007306286342947243, 0.023218625946243507]
b: 0.016648404245261664

可以看到,结果还是不错的

这篇关于仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034621

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.