基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面

2024-06-05 20:04

本文主要是介绍基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

        基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面.对光谱数据的成分进行提取,分析CO2,SO2,CO以及CH4四种成分比例。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.....................................................................
for i=1:length(Astart)plot([WL(Astart(i)),WL(Astart(i))],...[Ds(Astart(i))*4,Fspectrum(Astart(i))],':r')hold onplot([WL(Aend(i)),WL(Aend(i))],...[Ds(Aend(i))*4,Fspectrum(Aend(i))],':g')hold onX_point=[WL(Astart(i)),WL(Aend(i))];Y_point=[Fspectrum(Astart(i)),Fspectrum(Aend(i))];plot(X_point,Y_point,':k','Linewidth',2)hold on
end
hold off
legend('original spectrum','derivative spectrum');
xlabel('wavelength')
ylabel('Reflectance(%)')%光谱寻峰
Locs = func_findpeaks(As,option);
axes(handles.axes1);
plot(data1(:,1),As,'Color','blue'); 
hold on;
plot(data1(Locs,1),As(Locs),'k^','markerfacecolor',[1 0 0]);
hold on
for i = 1:length(Locs)text(data1(Locs(i),1)-40,As(Locs(i))+20,num2str(data1(Locs(i),1)));hold on
end
xlabel('W.L.(nm)');
ylabel('Value');if option == 1save r1.mat data1 As Locs
end
if option == 2save r2.mat data1 As Locs   
end%小波分解
NAME = 'haar';
figure;
subplot(611);
plot(A);
subplot(612);
plot(d5);
subplot(613);
plot(d4);
subplot(614);
plot(d3);
subplot(615);
plot(d2);
subplot(616);
plot(d1);%提取变换变换后的特征数据
[y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12] = func_wavelet_feature(As,NAME);
24_007m

4.本算法原理

        基于小波变换和峰值搜索的光谱检测技术是信号处理领域的一项重要方法,尤其适用于分析含有丰富频率成分的非平稳信号,如光谱分析中的复杂信号检测。该技术结合了小波变换的强大时频分析能力与峰值检测算法的敏锐性,能够在保持时间分辨率的同时,有效提取光谱数据中的关键特征,如吸收峰、发射峰等。

      小波变换是一种时频分析工具,相比传统的傅里叶变换,它在时域和频域都提供了更高的分辨率。小波基函数是一系列具有有限支撑、良好的局部化特性和一定的衰减性质的函数。小波变换的基本形式可以表示为:

      光谱信号通常包含多个频率成分,且这些成分可能随时间变化。应用小波变换分析光谱信号,首先需要选择合适的小波基函数,以匹配信号的特性。常见的选择包括Morlet小波、Daubechies小波等,依据信号的特性(如光滑度、尖锐度)进行选取。

      对于光谱数据S(λ),小波变换后得到的一维小波系数序列可以表达为:

       峰值检测是识别光谱中显著特征点(如吸收峰、发射峰)的关键步骤。在小波域中,峰值通常对应于信号中的特殊事件或变化点。检测过程通常包括以下几个步骤:

  1. 阈值确定:设定一个合适的阈值来区分信号和噪声。这可以通过多种方式实现,如固定阈值法、自适应阈值法(如基于噪声水平估计的固定因子乘积)、或是基于统计分布的方法。

  2. 峰值定位:在超过阈值的小波系数中,寻找局部最大值点。这一步骤可以通过比较邻近系数的大小来完成,具体算法有简单的局部极大值搜索或更复杂的轮廓跟踪算法。

  3. 峰值筛选:由于噪声或其他因素可能导致假峰的出现,对初步识别的峰值进行进一步筛选至关重要。常用策略包括基于形状、强度或位置的准则来排除非真实峰。

5.完整程序

VVV

这篇关于基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034041

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc