本文主要是介绍基于狄利克雷DirichletProcesses聚类的协同过滤推荐算法代码实现(输出聚类计算过程,分布图展示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
基于狄利克雷DirichletProcesses聚类的协同过滤推荐算法代码实现(输出聚类计算过程,分布图展示)
聚类(Clustering)就是将数据对象分组成为多个类或者簇 (Cluster),它的目标是:在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。所以,在很多应用中,一个簇中的数据对象可以被作为一个整体来对待,从而减少计算量或者提高计算质量。
一、DirichletProcesses聚类算法实现原理
狄利克雷聚类(Dirichlet Processes Clustering)是一种基于概率分布模型的聚类算法。
首先我们先简要介绍一下基于概率分布模型的聚类算法(后面简称基于模型的聚类算法)的原理:首先需要定义一个分布模型,简单的例如:圆形,三角形等,复杂的例如正则分布,泊松分布等;然后按照模型对数据进行分类,将不同的对象加入一个模型,模型会增长或者收缩;每一轮过后需要对模型的各个参数进行重新计算,同时估计对象属于这个模型的概率。所以说,基于模型的聚类算法的核心是定义模型,对于一个聚类问题,模型定义的优劣直接影响了聚类的结果,下面给出一个简单的例子,假设我们的问题是将一些二维的点分成三组,在图中用不同的颜色表示,图 A 是采用圆形模型的聚类结果,图 B 是采用三角形模型的聚类结果。可以看出,圆形模型是一个正确的选择,而三角形模型的结果既有遗漏又有误判,是一个错误的选择。
狄利克雷聚类算法是按照如下过程工作的:首先,我们有一组待聚类的对象和一个分布模型。使用 ModelDistribution 生成各种模型。初始状态,我们有一个空的模型,然后尝试将对象加入模型中,然后一步一步计算各个对象属于各个模型的概率。
本文主要是java语言实现,1000个点(本文是二维向量,也可以是多维,实现原理和程序一样),程序运行过程中会输出每一次遍历点的簇中心,和簇中包含的点,并将最终结果通过插件在html中显示。
二、DirichletProcesses聚类算法实现部分步骤
将本地文件读取到点集合中:
三、DirichletProcesses聚类算法实现结果
1、运算结果:
2、分布图:
需要源代码的朋友可联系我们,也可以留言、私信交流。
这篇关于基于狄利克雷DirichletProcesses聚类的协同过滤推荐算法代码实现(输出聚类计算过程,分布图展示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!