四足机器人步态仿真(三)四足机器人基础步态仿真

2024-06-02 12:12

本文主要是介绍四足机器人步态仿真(三)四足机器人基础步态仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

观前提醒,本章主要内容为分析四足机器人步态实现和姿态控制,碰撞体积等程序
步态效果:

一、完整代码如下 

# -*- coding: utf-8 -*-import pybullet as pimport timeimport numpy as npp.connect(p.GUI)p.createCollisionShape(p.GEOM_PLANE)p.createMultiBody(0,0)#Dog robot part shapessh_body = p.createCollisionShape(p.GEOM_BOX,halfExtents=[0.45, 0.08, 0.02])sh_extraweight = p.createCollisionShape(p.GEOM_BOX,halfExtents=[0.45, 0.08, 0.025])sh_roll = p.createCollisionShape(p.GEOM_BOX,halfExtents=[0.02, 0.02, 0.02])sh_hip = p.createCollisionShape(p.GEOM_BOX,halfExtents=[0.02, 0.02, 0.02])sh_knee = p.createCollisionShape(p.GEOM_BOX,halfExtents=[0.02, 0.02, 0.02])sh_foot = p.createCollisionShape(p.GEOM_SPHERE,radius=0.04)#The Dog robot is the body with other shapes linked to itbody_Mass = 1visualShapeId = -1link_Masses=[.1, .1, .1, .1,             .1, .1, .1, .1,             .1, .1, .1, .1,             .1, .1, .1, .1,             20]linkCollisionShapeIndices=[sh_roll, sh_hip, sh_knee, sh_foot,                           sh_roll, sh_hip, sh_knee, sh_foot,                           sh_roll, sh_hip, sh_knee, sh_foot,                           sh_roll, sh_hip, sh_knee, sh_foot,                           sh_extraweight]nlnk=len(link_Masses)linkVisualShapeIndices=[-1]*nlnk    #=[-1,-1,-1, ... , -1]#link positions wrt the link they are attached toxhipf=0.4xhipb=-0.4yhipl=0.1xoffh=0.05yoffh=0.05hu=0.3hl=0.3linkPositions=[[xhipf, yhipl, 0], [xoffh, yoffh, 0], [0, 0, -hu], [0, 0, -hl],               [xhipf, -yhipl, 0], [xoffh, -yoffh, 0], [0, 0, -hu], [0, 0, -hl],               [xhipb, yhipl, 0], [xoffh, yoffh, 0], [0, 0, -hu], [0, 0, -hl],               [xhipb, -yhipl, 0], [xoffh, -yoffh, 0], [0, 0, -hu], [0, 0, -hl],               [0,0,+0.029]]linkOrientations=[[0,0,0,1]]*nlnklinkInertialFramePositions=[[0,0,0]]*nlnk#Note the orientations are given in quaternions (4 params). There are function to convert of Euler angles and backlinkInertialFrameOrientations=[[0,0,0,1]]*nlnk#indices determine for each link which other link it is attached to# for example 3rd index = 2 means that the front left knee jjoint is attached to the front left hipindices=[0, 1, 2, 3,         0, 5, 6, 7,         0, 9,10,11,         0,13,14,15,         0]#Most joint are revolving. The prismatic joints are kept fixed for nowjointTypes=[p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_PRISMATIC,            p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_PRISMATIC,            p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_PRISMATIC,            p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_REVOLUTE, p.JOINT_PRISMATIC,            p.JOINT_PRISMATIC]#revolution axis for each revolving jointaxis=[[1,0,0], [0,1,0], [0,1,0], [0,0,1],      [1,0,0], [0,1,0], [0,1,0], [0,0,1],      [1,0,0], [0,1,0], [0,1,0], [0,0,1],      [1,0,0], [0,1,0], [0,1,0], [0,0,1],      [0,0,1]]#Drop the body in the scene at the following body coordinatesbasePosition = [0,0,1]baseOrientation = [0,0,0,1]#Main function that creates the dogdog = p.createMultiBody(body_Mass,sh_body,visualShapeId,basePosition,baseOrientation,                        linkMasses=link_Masses,                        linkCollisionShapeIndices=linkCollisionShapeIndices,                        linkVisualShapeIndices=linkVisualShapeIndices,                        linkPositions=linkPositions,                        linkOrientations=linkOrientations,                        linkInertialFramePositions=linkInertialFramePositions,                        linkInertialFrameOrientations=linkInertialFrameOrientations,                        linkParentIndices=indices,                        linkJointTypes=jointTypes,                        linkJointAxis=axis)            #Due to the weight the prismatic extraweight block needs to be motored upjoint=16p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=0.01,force=1000,maxVelocity=3)#Same for the prismatic feet spheresjoint=3p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=0.0,force=1000,maxVelocity=3)joint=7p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=0.0,force=1000,maxVelocity=3)joint=11p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=0.0,force=1000,maxVelocity=3)joint=15p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=0.0,force=1000,maxVelocity=3)#Add earth like gravityp.setGravity(0,0,-9.81)p.setRealTimeSimulation(1)#Point the camera at the robot at the desired angle and distancep.resetDebugVisualizerCamera( cameraDistance=1.5, cameraYaw=-30, cameraPitch=-30, cameraTargetPosition=[0.0, 0.0, 0.25])if (0):    t0=time.time()    t=time.time()    while ((t-t0)<10):        t=time.time()    p.disconnect()    brake#Scenery e.g. an inclined boxboxHalfLength = 2.5boxHalfWidth = 2.5boxHalfHeight = 0.2sh_colBox = p.createCollisionShape(p.GEOM_BOX,halfExtents=[boxHalfLength,boxHalfWidth,boxHalfHeight])mass = 1block=p.createMultiBody(baseMass=0,baseCollisionShapeIndex = sh_colBox,                        basePosition = [-2,0,-0.1],baseOrientation=[0.0,0.1,0.0,1])#Add extra lateral friction to the feet spheresp.changeDynamics(dog,3,lateralFriction=2)p.changeDynamics(dog,7,lateralFriction=2)p.changeDynamics(dog,11,lateralFriction=2)p.changeDynamics(dog,15,lateralFriction=2)#Function to calculate roll, hip and knee angles from the x,y,z coords of the foot wrt the hip.def xyztoang(x,y,z,yoffh,hu,hl):    dyz=np.sqrt(y**2+z**2)    lyz=np.sqrt(dyz**2-yoffh**2)    gamma_yz=-np.arctan(y/z)    gamma_h_offset=-np.arctan(-yoffh/lyz)    gamma=gamma_yz-gamma_h_offset    lxzp=np.sqrt(lyz**2+x**2)    n=(lxzp**2-hl**2-hu**2)/(2*hu)    beta=-np.arccos(n/hl)    alfa_xzp=-np.arctan(x/lyz)    alfa_off=np.arccos((hu+n)/lxzp)    alfa=alfa_xzp+alfa_off    if any( np.isnan([gamma,alfa,beta])):        print(x,y,z,yoffh,hu,hl)    return [gamma,alfa,beta]def setlegsxyz(xvec,yvec,zvec,vvec):    #[a1,a2]=xztoang(xvec[0],zvec[0],1,1)    a=xyztoang(xvec[0]-xhipf,yvec[0]-yhipl,zvec[0],yoffh,hu,hl)  #(x,y,z,yoffh,hu,hl)    spd=1    #any(np.isnan(a))    joint=0    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[0],force=1000,maxVelocity=spd)    joint=1    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[1],force=1000,maxVelocity=vvec[0])    joint=2    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[2],force=1000,maxVelocity=vvec[0])    a=xyztoang(xvec[1]-xhipf,yvec[1]+yhipl,zvec[1],-yoffh,hu,hl)  #(x,y,z,yoffh,hu,hl)    spd=1.0    joint=4    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[0],force=1000,maxVelocity=spd)    joint=5    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[1],force=1000,maxVelocity=vvec[1])    joint=6    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[2],force=1000,maxVelocity=vvec[1])    a=xyztoang(xvec[2]-xhipb,yvec[2]-yhipl,zvec[2],yoffh,hu,hl)  #(x,y,z,yoffh,hu,hl)    spd=1.0    joint=8    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[0],force=1000,maxVelocity=spd)    joint=9    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[1],force=1000,maxVelocity=vvec[2])    joint=10    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[2],force=1000,maxVelocity=vvec[2])    a=xyztoang(xvec[3]-xhipb,yvec[3]+yhipl,zvec[3],-yoffh,hu,hl)  #(x,y,z,yoffh,hu,hl)    spd=1.0    joint=12    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[0],force=1000,maxVelocity=spd)    joint=13    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[1],force=1000,maxVelocity=vvec[3])    joint=14    p.setJointMotorControl2(dog,joint,p.POSITION_CONTROL,targetPosition=a[2],force=1000,maxVelocity=vvec[3])#Pre-init robot positionsetlegsxyz([xhipf,xhipf,xhipb,xhipb],[yhipl+0.1,-yhipl-0.1,yhipl+0.1,-yhipl-0.1],[-0.5,-0.5,-0.5,-0.5],[1,1,1,1])t0=time.time()t=time.time()while ((t-t0)<4):    t=time.time()#Rotation matrix for yaw only between robot-frame and world-framedef RotYawr(yawr):    Rhor=np.array([[np.cos(yawr),-np.sin(yawr),0], [np.sin(yawr),np.cos(yawr),0], [0,0,1]])    return Rhor#Init robot position, orientation and pose params# O means in world-centered coordinates# R means in robot-centered coordinates# r is for "of the robot"# i is initialyawri=1.3xrOi=np.array([1,1,0.5])legsRi=np.array([[xhipf,xhipf,xhipb,xhipb],               [yhipl+0.1,-yhipl-0.1,yhipl+0.1,-yhipl-0.1],               [-0.5,-0.5,-0.5,-0.5]])#Set body to the robot posxbOi=xrOi#Init body position and orientationquat=p.getQuaternionFromEuler([0,0,yawri])p.resetBasePositionAndOrientation(dog,xbOi,quat)#Init leg abs posRyawri=RotYawr(yawri)legsO=(np.dot(Ryawri,legsRi).T + xbOi).T   #Apply rotation plus translation#Set the non-initial variables and matrixyawr=yawrixrO=xrOixbO=xrORyawr=RotYawr(yawri)#Recalc leg rel pos in robot frame and set the legsdlegsO=(legsO.T-xbO).TdlegsR=np.dot(Ryawr.T,dlegsO)setlegsxyz(dlegsR[0],dlegsR[1],dlegsR[2],[1,1,1,1])#Calculate a new robot center position from the average of the feet positions#Calculate a new robot yaw ditrection also from the feet positionsxfO=(legsO[:,0]+legsO[:,1])/2.0xbO=(legsO[:,2]+legsO[:,3])/2.0xrOn=(xfO+xbO)/2.0 + np.array([0,0,0.5])xfmbO=xfO-xbOyawrn=np.arctan2(xfmbO[1],xfmbO[0])#Camera paramers to be able to yaw pitch and zoom the camera (Focus remains on the robot) cyaw=10cpitch=-15cdist=1.5#Walking speed (changes the walking loop time)walkLoopSpd=400#Change general motor speedvvec=[12]*4#Current leg to change positionl=0#Init the center for the robot rotation to the current robot posxrcO=xrO#Set the body position to the robot positionxoff=0yoff=0#Init to walking fwddr=0drp=0#Leg sequence (for rotating the robot, I chose to chg legs in the order front-left, fr, br, bl)lseq=[0,1,3,2]lseqp=[0,1,3,2]#lseq=[2,0,3,1]#lseqp=[2,0,3,1]while (1):    cubePos, cubeOrn = p.getBasePositionAndOrientation(dog)    p.resetDebugVisualizerCamera( cameraDistance=cdist, cameraYaw=cyaw, cameraPitch=cpitch, cameraTargetPosition=cubePos)    keys = p.getKeyboardEvents()    #Keys to change camera    if keys.get(100):  #D        cyaw+=1    if keys.get(97):   #A        cyaw-=1    if keys.get(99):   #C        cpitch+=1    if keys.get(102):  #F        cpitch-=1    if keys.get(122):  #Z        cdist+=.01    if keys.get(120):  #X        cdist-=.01    #Keys to change the robot walk (fwd, bkw, rot right, rot left)    if keys.get(65297): #Up        drp=0    if keys.get(65298): #Down        drp=2    if keys.get(65296): #Right        drp=1        xrcO=xrO        #Set the center for the robot rotation to the current robot pos        lseqp=[1,0,2,3] #Change the leg sequence to open up the front arms rather than close them    if keys.get(65295): #Left        drp=3        xrcO=xrO        lseqp=[0,1,3,2] #Change the leg sequence to open up the front arms rather than close them    #Time cycle    tv=int(((time.time()-t0)*walkLoopSpd)  % 800)    #One leg movement in 200 units. one 4-leg walk cycle in 800 units    #Using <, >, % (modulo) and divide we can easily do something in a specific part of the cycle    #Apply new walking cycle type (e.g. chg from fwd to bkw) only at the start of next cycle    if tv<20 and (not dr==drp):        dr=drp        lseq=lseqp    #Index of the leg to move    l=int(tv/200)    #Actual leg to move    k=lseq[l]    #In the beginning of the leg cycle the body is centered at the robot center    #then it gradually moves in the opposite direction of the leg to be moved     #to ensure the center of gravity remains on the other 3 legs    #when the moving leg goes down again the body center returns to the robot center    #The vars xoff and yoff move the body w.r.t. the robot center in the robot frame    if int(tv%200)<10:        xoff=0        yoff=0    elif int(tv%200)<80:        xoff+=0.002*(-1+2*int(k/2))  #Work it out on paper to see it moves opposite to the stepping leg        yoff+=0.002*(-1+2*(k%2))         elif int(tv%200)>160:        xoff-=0.004*(-1+2*int(k/2))        yoff-=0.004*(-1+2*(k%2))         #Recalc leg rel pos in desired robot frame    dlegsO=(legsO.T-xrO).T  #Translate    dlegsR=np.dot(Ryawr.T,dlegsO)  #Rotate (Note the inverse rotation is the transposed matrix)    #Then apply the body movement and set the legs    setlegsxyz(dlegsR[0]-xoff-0.03,dlegsR[1]-yoff,dlegsR[2],vvec)  #0.03 is for tweaking the center of grav.    if int(tv%200)>80:        dlegsO=(legsO.T-xrcO).T        yawlO=np.arctan2(dlegsO[1,k],dlegsO[0,k])        rlO=np.sqrt(dlegsO[0,k]**2+dlegsO[1,k]**2)        if dr==0:            legsO[0,k]=rlO*np.cos(yawlO)+xrcO[0]+0.01*np.cos(yawr)            legsO[1,k]=rlO*np.sin(yawlO)+xrcO[1]+0.01*np.sin(yawr)        elif dr==1:            yawlO-=0.015             legsO[0,k]=rlO*np.cos(yawlO)+xrcO[0]            legsO[1,k]=rlO*np.sin(yawlO)+xrcO[1]        elif dr==2:            legsO[0,k]=rlO*np.cos(yawlO)+xrcO[0]-0.01*np.cos(yawr)            legsO[1,k]=rlO*np.sin(yawlO)+xrcO[1]-0.01*np.sin(yawr)        elif dr==3:            yawlO+=0.015             legsO[0,k]=rlO*np.cos(yawlO)+xrcO[0]            legsO[1,k]=rlO*np.sin(yawlO)+xrcO[1]        if int(tv%200)<150:            #Move leg k upwards             legsO[2,k]+=.006        else:            #Move leg k wards             legsO[2,k]-=.006    else:        #Move/keep all legs down to the ground        legsO[2,0]=0.0        legsO[2,1]=0.0        legsO[2,2]=0.0        legsO[2,3]=0.0    #Calculate vectors and matrix for the next loop    xfrO=(legsO[:,0]+legsO[:,1])/2.0    xbkO=(legsO[:,2]+legsO[:,3])/2.0    xrO=(xfrO+xbkO)/2.0     xrO[2]=0.5    xfmbO=xfrO-xbkO    yawr=np.arctan2(xfmbO[1],xfmbO[0])    Ryawr=RotYawr(yawr)    time.sleep(0.01)p.disconnect()

运行上述代码,我们可以看到四足机器人的形态、碰撞体积、基础步态
另外此程序还在场景中仿真了一个斜坡用于测试

 点击四足机器人步态仿真(三)四足机器人基础步态仿真 - 古月居 可查看全文

这篇关于四足机器人步态仿真(三)四足机器人基础步态仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023934

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组