已知基础解系反求有效方程(矩阵)

2024-06-02 06:32

本文主要是介绍已知基础解系反求有效方程(矩阵),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

已知基础解系反求有效方程(矩阵)

@(数学)

这个是很有趣的推导过程,原理需要弄清楚。

即:已知Ax = 0的基础解系,由Ax = 0的系数行向量与解向量的关系可以反过来求解A.

具体推导如下:

齐次方程组:

a11x1+a12x2+a13x3+...+a1nxn=0a21x1+a22x2+a23x3+...+a2nxn=0................................an1x1+an2x2+an3x3+...+annxn=0

有解 βi=

这篇关于已知基础解系反求有效方程(矩阵)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023209

相关文章

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

一文教你PyCharm如何有效地添加源与库

《一文教你PyCharm如何有效地添加源与库》在使用PyCharm进行Python开发的时候,很多时候我们需要添加库或者设置源,下面我们就来和大家详细介绍一下如何在PyCharm中添加源和库吧... 在使用PyCharm进行python开发的时候,很多时候我们需要添加库或者设置源。这些操作可以帮助我们更方便

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Linux虚拟机不显示IP地址的解决方法(亲测有效)

《Linux虚拟机不显示IP地址的解决方法(亲测有效)》本文主要介绍了通过VMware新装的Linux系统没有IP地址的解决方法,主要步骤包括:关闭虚拟机、打开VM虚拟网络编辑器、还原VMnet8或修... 目录前言步骤0.问题情况1.关闭虚拟机2.China编程打开VM虚拟网络编辑器3.1 方法一:点击还原VM

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言