《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析

本文主要是介绍《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/77649026

完整代码:https://github.com/xiaoyesoso/neural-networks-and-deep-learning/blob/master/src/network2.py

我们之前根据《neural network and deep learning》题解——ch02 反向传播讲解了ch02 Network源码分析。这篇是对ch02 Network源码分析的改进。这里我们结合《机器学习技法》学习笔记12——神经网络重新讲解下。

交叉熵代价函数

class QuadraticCost(object):@staticmethoddef fn(a, y):return 0.5 * np.linalg.norm(a - y) ** 2@staticmethoddef delta(z, a, y):return (a - y) * sigmoid_prime(z)class CrossEntropyCost(object):@staticmethoddef fn(a, y):return np.sum(np.nan_to_num(-y * np.log(a) - (1 - y) * np.log(1 - a)))@staticmethoddef delta(z, a, y):return (a - y)

这边我们把损失函数封装成两个类,静态函数 fn 返回的是损失,delta返回的是ch02 反向传播中的δ。该delta对应《机器学习技法》学习笔记12——神经网络中就是:

我们在Network中使用的就是二次代价函数,这里我们就只讲解另外的交叉熵代价函数:

对应代码:

np.sum(np.nan_to_num(-y * np.log(a) - (1 - y) * np.log(1 - a)))

接下来我们来看看关于delta的问题:

看看 network.py 中的 Network.cost_derivative ⽅法。这个⽅法是为⼆次代价函数写的。怎样修改可以⽤于交叉熵代价函数上?你能不能想到可能在交叉熵函数上遇到的问题?在 network2.py 中,我们已经去掉了Network.cost_derivative ⽅法,将其集成进了‘CrossEntropyCost.delta‘ ⽅法中。请问,这样是如何解决你已经发现的问题的?

对应《机器学习技法》学习笔记12——神经网络中,cost_derivative就是 ∂ e n ∂ x L ∂\frac{e_n}{∂x^L} xLen,有链式法则得到:
δ L = ∂ e n ∂ x L ∂ x L ∂ s L \large δ^L = \frac{∂e_n}{∂x^L}\frac{∂x^L}{∂s^L} δL=xLensLxL
network中也是的cost_derivative也是用在求δ。
而CrossEntropyCost.delta是:

return (a - y)

代码 中的 a 就是上式中的x,z 就是上式中的 s。
我们对CrossEntropyCost关于a求导,得到:
− ( y a − 1 − y 1 − a ) = − y ( 1 − a ) + a ( 1 − y ) a ( 1 − a ) = − y + a a ( 1 − a ) \large -(\frac{y}{a} - \frac{1-y}{1-a}) = \frac{-y(1-a) + a(1- y)}{a(1-a)} = \frac{-y+a}{a(1-a)} (ay1a1y)=a(1a)y(1a)+a(1y)=a(1a)y+a
所以 CrossEntropyCost 的 cost_derivative 是 − y + a a ( 1 − a ) \frac{-y+a}{a(1-a)} a(1a)y+a
由 http://blog.csdn.net/u011239443/article/details/75091283#t0 可知:
∂ a ∂ z = a ( 1 − a ) \large \frac{∂a}{∂z} = a(1-a) za=a(1a)
所以:
δ = ∂ e n ∂ a ∂ a ∂ z = − y + a a ( 1 − a ) a ( 1 − a ) = a − y \large δ = \frac{∂e_n}{∂a}\frac{∂a}{∂z} = \frac{-y+a}{a(1-a)}a(1-a) = a - y δ=aenza=a(1a)y+aa(1a)=ay

初始化

和Network基本上一样,只不过封装成了一个default_weight_initializer函数

    def __init__(self, sizes, cost=CrossEntropyCost):self.num_layers = len(sizes)self.sizes = sizesself.default_weight_initializer()self.cost = costdef default_weight_initializer(self):self.biases = [np.random.rand(y, 1) for y in self.sizes[1:]]self.weights = [np.random.rand(y, x) / np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])]

随机梯度下降

和Network基本上一样,各个monitor是代表是否需要检测该对应的指标。

    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda=0.0,evaluation_data=None,monitor_evaluation_cost=False,monitor_evaluation_accuracy=False,monitor_training_cost=False,monitor_training_accuray=False):if evaluation_data:n_data = len(evaluation_data)n = len(training_data)evaluation_cost, evaluation_accurary = [], []training_cost, training_accuray = [], []for j in xrange(epochs):random.shuffle(training_data)mini_batches = [training_data[k:k + mini_batch_size] for k in range(0, n, mini_batch_size)]for mini_batch in mini_batches:self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))print "Epoch %s training complete" %(j+1)if monitor_training_cost:cost = self.total_cost(training_data, lmbda)training_cost.append(cost)print "Cost on train: {}".format(cost)if monitor_training_accuray:acc = self.accuracy(training_data,covert=True)training_accuray.append(acc)print "Acc on train: {} / {}".format(acc,n)if monitor_evaluation_cost:cost = self.total_cost(evaluation_data, lmbda,convert=True)evaluation_cost.append(cost)print "Cost on evaluation: {}".format(cost)if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)print "Acc on evaluation: {} / {}".format(acc, n_data)printreturn evaluation_cost,evaluation_accurary,training_cost,training_accuray

反向传播

    def backprop(self, x, y):nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]activation = xactivations = [x]zs = []for b, w in zip(self.biases, self.weights):z = np.dot(w, activation) + bzs.append(z)activation = sigmoid(z)activations.append(activation)delta = (self.cost).delta(zs[-1], activations[-1], y)nabla_b[-1] = deltanabla_w[-1] = np.dot(delta, activations[-2].transpose())for l in xrange(2, self.num_layers):z = zs[-l]sp = sigmoid_prime(z)delta = np.dot(self.weights[-l + 1].transpose(), delta) * spnabla_b[-l] = deltanabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())return (nabla_b, nabla_w)def update_mini_batch(self, mini_batch, eta, lmbda, n):nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]for x, y in mini_batch:delta_nabla_b, delta_nabla_w = self.backprop(x, y)nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]self.weights = [(1 - eta * (lmbda / n)) * w - (eta / len(mini_batch)) * nw for w, nw inzip(self.weights, nabla_w)]self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, nabla_b)]

我们可以看到基本上和Network中一样,前面已经讲解过δ。这里的代码也可以和《机器学习技法》学习笔记12——神经网络中的公式对应:

L2规范化

主要区别是在最后两行更新的时候加入了L2规范化:

求偏导数得:

则:

L1规范化

这里引出了我们这节的另外一个问题:

更改上⾯的代码来实现 L1 规范化

求导得到:


则:

对应的代码应该写为:

  self.weights = [(1 - eta * (lmbda / n)*np.sign(w)) * w - (eta / len(mini_batch)) * nw for w, nw inzip(self.weights, nabla_w)]self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, nabla_b)]

测评

有些label,我们需要对其进行二元化处理,然后使用:

def vectorized_result(j):e = np.zeros((10, 1))e[j] = 1.0return e

计算损失率

这会加入L2 规范化

    def total_cost(self, data, lmbda, convert=False):cost = 0.0for x, y in data:a = self.feedforward(x)if convert:y = vectorized_result(y)cost += self.cost.fn(a, y) / len(data)cost += 0.5 * (lmbda / len(data)) * sum(np.linalg.norm(w) ** 2 for w in self.weights)return cost

回到我们之前的L1规范化实现的问题,这里代码可改成:

cost +=  (lmbda / len(data)) * sum(np.linalg.norm(w) for w in self.weights)

计算准确率

和Network中基本上一致

    def accuracy(self,data,covert=False):if covert:results = [(np.argmax(self.feedforward(x)),np.argmax(y)) for (x,y) in data]else:results = [(np.argmax(self.feedforward(x)),y) for (x,y) in data]return sum(int(x==y) for (x,y) in results)

这里写图片描述

这篇关于《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023050

相关文章

JAVA Calendar设置上个月时,日期不存在或错误提示问题及解决

《JAVACalendar设置上个月时,日期不存在或错误提示问题及解决》在使用Java的Calendar类设置上个月的日期时,如果遇到不存在的日期(如4月31日),默认会自动调整到下个月的相应日期(... 目录Java Calendar设置上个月时,日期不存在或错误提示java进行日期计算时如果出现不存在的

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Nginx错误拦截转发 error_page的问题解决

《Nginx错误拦截转发error_page的问题解决》Nginx通过配置错误页面和请求处理机制,可以在请求失败时展示自定义错误页面,提升用户体验,下面就来介绍一下Nginx错误拦截转发error_... 目录1. 准备自定义错误页面2. 配置 Nginx 错误页面基础配置示例:3. 关键配置说明4. 生效

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序