基于深度学习YOLOv8\YOLOv5的花卉识别鲜花识别检测分类系统设计

本文主要是介绍基于深度学习YOLOv8\YOLOv5的花卉识别鲜花识别检测分类系统设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将介绍基于深度学习YOLOv8\YOLOv5+PySide6+SQLite的花卉检测与识别系统,该系统基于YOLOv8算法,并与YOLOv5版本进行比较,该系统不仅实现了对花卉的精准识别和分类,还提供了包括用户认证管理、模型快速切换及界面个性化定制在内的多项功能,获取方式如下。

wx供重浩:创享日记
那边对话框发送:花卉61
获取完整源码源文件+数据集+训练好模型+配置和修改文档+配套设计说明文章+远程操作等

在这里插入图片描述
在这里插入图片描述


一、项目效果展示

基于深度学习YOLOv8\YOLOv5+PySide6的花卉识别鲜花识别检测系统设计

在这里插入图片描述


二、设计系统介绍

1、数据集介绍

在花卉识别研究中,一个精心设计的数据集是训练精确AI模型的基石。我们创建了一个包含10513张花卉图片的数据集,旨在推动该领域的技术发展。该数据集分为训练集、验证集和测试集,分别为9131张、919张和463张,确保模型在多样化数据上的训练和独立数据上的验证。

每张图片都经过了严格的预处理,包括方向校正、去除EXIF信息、统一分辨率调整至640x640像素,并应用自适应均衡化技术增强对比度,以突出花卉特征,优化模型学习效果。

在这里插入图片描述
该数据集中有13个类,即该模型能识别分类13种花卉,对应关系如下:‘Allium’: “大葱花”, ‘Borage’: “琉璃苣”, ‘Burdock’: “牛蒡”, ‘Calendula’: “金盏花”, ‘Chicory’: “菊苣”, ‘Chive blossoms’: “韭菜花”, ‘Coltsfoot’: “款冬”, ‘Common mallow’: “锦葵”,‘Common yarrow’: “洋蓍草”, ‘Coneflower’: “金光菊”, ‘Cow parsley’: “欧芹”, ‘Dandelion’: “蒲公英”,‘Gardenia’: “栀子花”。

在对数据集进行详尽分析后,我们发现了一些关键的分布特点。类别的不平衡性是一个显著的问题,这可能导致模型偏向于识别数量较多的类别。例如,Allium类花卉在数据集中占比较高,而Gardenia类则较少。为了解决这一问题,我们采用马赛克9数据增强技术,具体的数据集特性指标如下(在源码中有这些图表),具体代表什么可以详见配套论文。

在这里插入图片描述

2、系统介绍

深度学习技术栈:YOLOv8、YOLOv5
GUI(可视化操作界面)技术栈:PySide6
数据库技术栈:SQLite

(1)本系统引入了SQLite数据库支持的注册与登录机制。新用户需在注册页面填写用户名和密码,系统随后将这些信息存储于SQLite数据库。注册完成后,用户便可通过输入用户名和密码在登录页面进行验证。这样的设计旨在提升系统安全,同时为未来拓展个性化服务提供了便利。(所有的背景图标均可个性化修改)
在这里插入图片描述

(2)系统主界面提供了多样化的输入选项,包括图片、视频、实时摄像头以及批量文件上传功能,用户可以轻松点击相应按钮,选取进行花卉识别的素材,或启动摄像头进行实时识别。与此同时,还可以设定置信度和IOU,保留符合要求的识别结果。在识别过程中,系统不仅实时展示识别结果(包含类别、位置、置信度等),还将所有识别记录自动存储于数据库中,方便后续查询和管理。

系统还提供了一键切换YOLOv8/v5模型的功能,用户可通过点击"更换模型"按钮,轻松选择不同的YOLOv8模型进行检测。同时,系统内置的数据集可用于重新训练模型,满足用户在多样化场景下的检测需求。
在这里插入图片描述

为了打造个性化的使用体验,系统还支持界面自定义。用户可以根据自己的喜好,自由调整界面的图标、文字等元素。无论是选择个性化的图标风格,还是修改界面的文字描述,用户都可以根据详细的代码注释和说明文档轻松实现,享受定制化的操作体验。

在这里插入图片描述
在这里插入图片描述

3、模型介绍

YOLOv5和YOLOv8是目标检测领域的两个重要算法,它们分别代表了YOLO系列的第五代和第八代产品。

YOLOv5是由Glenn Jocher等人研发的,是Ultralytics公司的开源项目。YOLOv5根据参数量分为了n、s、m、l、x五种类型,参数量依次上升,效果也随之提升。从2020年6月发布至2022年11月已经更新了7个大版本,在v7版本中还添加了语义分割的功能。YOLOv5算法主要分为三个部分:Backbone网络、Neck网络和Head网络。其中,Backbone网络是整个算法的核心部分,通过多个卷积层和池化层对输入图像进行特征提取。Neck网络则负责对融合后的特征进行加强,使用SPP结构在不同尺度下应用池化操作。而Head网络则通过分类分支和回归分支两个部分来对融合后的特征进行分类和定位。
在这里插入图片描述

YOLOv8是Ultralytics公司在2023年1月10号开源的YOLOv5的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务。YOLOv8是一个SOTA模型,它建立在以前YOLO版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的Anchor-Free检测头和一个新的损失函数,可以在从CPU到GPU的各种硬件平台上运行。YOLOv8的开源库的两个主要优点是融合了众多当前SOTA技术于一体,未来将支持其他YOLO系列以及YOLO之外的更多算法。

在这里插入图片描述

YOLOv8相比YOLOv5精度提升非常多,但是相应的参数量和FLOPs也增加了不少,从性能曲线也可以看出相比YOLOv5大部分模型推理速度变慢了。YOLOv8提供了一个全新的SOTA模型,包括P5 640和P6 1280分辨率的目标检测网络和基于YOLACT的实例分割模型。和YOLOv5一样,基于缩放系数也提供了N/S/M/L/X尺度的不同大小模型,用于满足不同场景需求。

总的来说,YOLOv5和YOLOv8都是目标检测领域的重要算法,YOLOv5以其优异的检测速度和精度平衡而广泛应用,而YOLOv8则在YOLOv5的基础上引入更多创新,性能进一步提升,是YOLO系列的最新成果。

(1)模型训练:运行run_train_model.py文件可以进行训练; 本项目中已经保存了训练 好的模型和训练结果,可以不用再次训练而直接使用。run_train_model.py文件如下。

import osimport torch
import yaml
from ultralytics import YOLO  # 导入YOLO模型
from QtFusion.path import abs_path
device = "0" if torch.cuda.is_available() else "cpu"if __name__ == '__main__':  # 确保该模块被直接运行时才执行以下代码workers = 1batch = 8data_name = "Flower"data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')  # 数据集的yaml的绝对路径unix_style_path = data_path.replace(os.sep, '/')# 获取目录路径directory_path = os.path.dirname(unix_style_path)# 读取YAML文件,保持原有顺序with open(data_path, 'r') as file:data = yaml.load(file, Loader=yaml.FullLoader)# 修改path项if 'path' in data:data['path'] = directory_path# 将修改后的数据写回YAML文件with open(data_path, 'w') as file:yaml.safe_dump(data, file, sort_keys=False)model = YOLO(abs_path('./weights/yolov8n.pt'), task='detect')  # 加载预训练的YOLOv8模型results2 = model.train(  # 开始训练模型data=data_path,  # 指定训练数据的配置文件路径device=device,  # 自动选择进行训练workers=workers,  # 指定使用2个工作进程加载数据imgsz=640,  # 指定输入图像的大小为640x640epochs=150,  # 指定训练150个epochbatch=batch,  # 指定每个批次的大小为8name='train_v8_' + data_name  # 指定训练任务的名称)model = YOLO(abs_path('./weights/yolov5nu.pt', path_type='current'), task='detect')  # 加载预训练的YOLOv5模型# model = YOLO('./weights/yolov5.yaml', task='detect').load('./weights/yolov5nu.pt')  # 加载预训练的YOLOv5模型# Training.results = model.train(  # 开始训练模型data=data_path,  # 指定训练数据的配置文件路径device=device,  # 自动选择进行训练workers=workers,  # 指定使用2个工作进程加载数据imgsz=640,  # 指定输入图像的大小为640x640epochs=150,  # 指定训练150个epochbatch=batch,  # 指定每个批次的大小为8name='train_v5_' + data_name  # 指定训练任务的名称)

在这里插入图片描述

(2)模型指标:训练好的模型指标图表数据等均在run文件夹里面,可以根据需要使用,具体代表什么可以详见配套论文或网上查看。如下展示YOLOv8模型部分指标。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)模型推理识别:首先导入了OpenCV库和YOLO模型。OpenCV库是一个开源的计算机视觉和机器学习软件库,包含了众多的视觉处理函数,使用它来读取和处理图像;YOLO模型则是要用到的目标检测模型。 接着,加载自己训练好的YOLO模型,可以直接用于目标检测任务。然后,使用OpenCV读取了一个图像文件,这个图像文件作为要进行目标检测的图像输入。在读取了图像文件之后,就可以使用加载的模型对图像进行预测了。(这就是这个系统的核心)


三、项目环境配置

在这里插入图片描述
在这里插入图片描述

获取以上完整资料和服务详见博客文字开头第二段

这篇关于基于深度学习YOLOv8\YOLOv5的花卉识别鲜花识别检测分类系统设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022922

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设