SleepFM:利用对比学习预训练的多模态“睡眠”基础模型

2024-06-01 18:28

本文主要是介绍SleepFM:利用对比学习预训练的多模态“睡眠”基础模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在阅读过程中有些知识点存在盲区,可以回到如何优雅的谈论大模型重新阅读。另外斯坦福2024人工智能报告解读为通识性读物。若对于如果构建生成级别的AI架构则可以关注AI架构设计。技术宅麻烦死磕LLM背后的基础模型。

SleepFM

睡眠医学是一个关键领域,涉及监测和评估生理信号以便于诊断睡眠障碍和了解睡眠模式。多导睡眠图 (PSG)等技术可记录睡眠期间的大脑、心脏和呼吸活动,从而反映一个人的睡眠健康状况。这些数据对于对睡眠阶段分类和识别睡眠障碍至关重要。

PSG 通常包括脑电图 (EEG)、眼电图 (EOG)、肌电图 (EMG)、心电图 (ECG) 和呼吸通道。每种模式都提供了独特的视角:大脑活动信号 (BAS) 测量大脑功能,心电图监测心律,呼吸传感器量化呼吸模式,共同提供睡眠健康的全面评估。

手动分析涉及由训练有素的技术人员进行目视检查,费时费力,而且容易出错。这种传统方法面临着重大挑战,尤其是随着睡眠数据量的增加。因此迫切需要能高效和准确的多种睡眠数据的融合自动化分析技术。

目前睡眠数据分析方法主要依赖于监督深度学习模型。这些模型在自动化睡眠分期和睡眠呼吸障碍等方面的确斩获不少。然而大多数现有方法依赖于来自比较狭窄的语料,并没有利用PSG提供的全部数据。

此外,虽然对比学习在其他领域取得了成功,但它在整合 BAS、ECG 和呼吸信号进行睡眠分析方面的应用仍未得到充分探索。

来自斯坦福大学和丹麦技术大学的研究人员推出SleepFM,这是一种用于睡眠分析的开创性多模态基础模型。该模型利用了来自14,000多名参与者的庞大多模态睡眠记录数据集,这些数据在1999年至2020年间在斯坦福睡眠诊所收集的总计超过100,000小时的睡眠数据。SleepFM 利用对比学习方法来整合大脑活动、心电图和呼吸信号。这种集成使模型能够捕获全面的生理表征,从而显着提高睡眠分析的准确性。

对比学习

对比学习(Contrastive learning)代表了机器学习方法的范式(paradigm)转变,特别是在处理未标记数据集的场景。这种方法的核心是基于数据的相似性和不同性对数据进行二元分类。该框架有效地将相似的实例放置在潜在空间中,同时确保不同类别进行分离。它在具体的表现就是相似性的数据应该在学到的嵌入(Embedding)空间保持紧密对齐,而那些不同的数据则应该相离更远。

对比学习最重要的是数据增强,此步骤通过各种转换来生成一系列数据不同维度的表示方法。包括裁剪、翻转、旋转和其他扰动,有助于扩大数据集的多样性。关键还是要增强数据的异质性,从而将模型引入相同实例的多个视角。

举个例子,将苹果的各个维度的照片输入模型,告诉模型这都是苹果

架构详解

SleepFM采用三种一维卷积神经网络 (CNN) 从每种模态(BAS、ECG 和呼吸信号)生成嵌入。这些模型的架构基于为对 ECG 测量进行分类而开发的 1D CNN。

每个 CNN 都经过定制以处理其各自模式的特定特征:10 个用于 BAS 的通道,2个用于 ECG 的通道,7个用于呼吸通道。引入了一种Leave-One-Out的技术,在捕捉不同生理信号之间的协同关系明显优于标准的成对的对比学习。

在这次的项目中,研究人员探索了两种用于跨模态学习联合表示的对比学习CL的框架进行模型的预训练。一种为标准成对的 CL,另外一种为Leave-One-Out CL(上图)。

在这里有三种模态,也就是在同一时间有三个相匹配的输入。Leave-One-Out构建对比学习样本时,将其中的两个输入与余下的输入构成样本对,如此可以从一个片段构建出三个样本对。

关键的指导思想将来自不同模态的正匹配对在Embedding空间中拉近,同时拉开负匹配对。这里正匹配来自不同模态的经过时间对齐的30秒数据块。其余的所有都被视为负匹配对。

按照睡眠研究中使用的标准剪辑持续时间,将所有参与者的总睡眠持续时间细分为连续的 30 秒剪辑。然后将数据集重新采样为 256Hz,以标准化所有参与者的采样率。此外,专业的睡眠技术人员为睡眠阶段和 SDB的每个剪辑贴上了标签。

模型预训练涉及使用设置为0.001的初始学习率和0.9的动量来最小化随机梯度下降的对比损失。学习率每5个周期衰减10倍。可训练的温度参数初始化为0。训练最多跨越20个周期,并根据验证损失提前停止,采用 32 个批处理大小,并在每个周期验证检查点以确保稳健的正则化。

通过这种自监督方法完成预训练后,利用学习到的模态编码器为训练、验证和测试集生成Embedding。随后利用Embeding来进行分类器训练。

大白话就是这里其实重点在于多模态的对齐,然后使用这个基础模型再去进行睡眠阶段分类和 SDB事件检测的模型训练。下图为利用SleepFM去做下游任务的表现。

小编认为该模型的成功主要归功于它能够学习丰富的多模态生理数据表示,这对于准确的睡眠分析至关重要。

而且SleepFM在人口统计学属性分类方面也表现出色,在从30秒的生理数据片段中预测年龄和性别方面表现出很高的准确性。该模型在0-18岁、18-35岁、35-50岁和50+年龄组的AUROC分别为0.982、0.852、0.784和0.915。对于性别分类,AUROC为0.850,明显优于基线模型。

这篇关于SleepFM:利用对比学习预训练的多模态“睡眠”基础模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021772

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验