5.25.1 用于组织病理学图像分类的深度注意力特征学习

本文主要是介绍5.25.1 用于组织病理学图像分类的深度注意力特征学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提出了一种基于深度学习的组织病理学图像分类新方法。我们的方法建立在标准卷积神经网络 (CNN) 的基础上,并结合了两个独立的注意力模块,以实现更有效的特征学习。

具体而言,注意力模块沿不同维度推断注意力图,这有助于将 CNN 聚焦于关键图像区域,并突出显示判别性特征通道,同时抑制与分类任务无关的信息。注意力模块是轻量级的,并且以较小的额外计算开销增强了特征表示。

1. 介绍

使用组织活检的显微镜组织病理学检查已广泛应用于癌症诊断,并在实践中被视为确诊金标准。诊断报告(包括分级和分期)通常由经验丰富的病理学家通过目视检查组织学样本完成。随着图像处理技术的最新进展,这种组织病理学分析的自动化变得越来越可能,从而帮助病理学家提高工作效率和客观性。作为一项基本任务,组织病理学图像的分类近年来备受关注。然而,由于组织病理学图像固有的复杂视觉模式,这种分类任务相当具有挑战性。

早期的组织病理学图像分类研究主要依赖于从整个图像或分割块中提取的手工特征 。虽然手工特征具有可解释性,但由于对图像的描述有限,因此通常无法满足此任务的要求。 

利用卷积神经网络 (CNN) 进行自动图像特征学习,结果表明该方法比手工设计的性能更好。然而,基于 CNN 的模型的一个主要弱点是它们通常需要大量数据进行训练。为了缓解数据密集型问题,一种常见的策略是对在大型图像数据集(例如 ImageNet)上预训练的模型进行微调。另一类不同的方法只是利用预训练的 CNN 作为特征提取器,然后应用 Fisher 向量 (FV) 编码进行全局特征表示。这些方法在取得最佳效果的同时,往往会产生冗余和噪声的特征,不利于分类。

1.1 主要贡献

提出了一种新的 CNN 架构,并从不同的角度改进了组织病理学图像(斑块)分类的特征表示。我们方法的核心是注意力机制,它可以帮助 CNN 专注于对分类任务至关重要的区域和特征通道。

主要动机来自人类的视觉系统:当感知场景时,人类首先会瞥一眼该场景,然后立即关注显著内容,而忽略不相关的信息。通过全局特征相关性分析实现了注意力图等机制。具体而言,受 Transformer 和非局部神经网络 [11] 的启发,我们设计了两个注意力模块,分别沿通道和空间维度推断注意力图

通道注意力(C-Attn)模块允许网络专注于判别特征通道并减少冗余,而空间注意力(S-Attn)模块突出显示有用区域并抑制与网络无关的区域。这两个模块协同增强了判别学习能力,并且可以即插即用的方式集成到任意现有的 CNN 架构中。

在实践中,我们采用 VGG19 [12] 作为基础模型,并在不同位置插入注意模块,如图所示。我们将我们的方法应用于良性和恶性乳腺癌分类任务,并在公开的 BreakHis 数据集 [2] 上证明了我们的方法与最先进的方法相比的优越性。

2. 方法

给定一个中间特征图 \mathbf{F}\in\mathbb{R}^{C\times H\times W} 作为输入(C、H 和 W 分别是 F 的通道数、高度和宽度),C-Attn 和 S-Attn 模块分别沿通道和空间维度推断注意力图 A_c

这篇关于5.25.1 用于组织病理学图像分类的深度注意力特征学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019176

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动