在“AI PC”中使用NPU运行 Phi-3-mini

2024-05-31 14:52
文章标签 ai 使用 运行 pc npu mini phi

本文主要是介绍在“AI PC”中使用NPU运行 Phi-3-mini,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的公众号“ONE生产力”,获取更多AI、云计算资讯分享!

前段时间,我做了一系列微软Phi-3-mini小语言模型的教程,很多朋友参考教程进行了实践,其中有一个朋友反馈说模型token推理很慢,没有答道我说的可用程度。我询问了他的硬件配置,他说是才买的联想“AI PC”,配备了Intel Core Ultra 7处理器。这配置可比我用的7840HS强多了,但为何运行效果不佳呢?因为没有正确使用Intel Core Ultra处理器内置的NPU。

什么是NPU?

网上有很多人吐槽“AI PC”,说这个无非是装了一些AI应用,其实和硬件没关系,X79洋垃圾一样可以用。这话对也不对,确实目前大多数AI应用都依赖云服务,说白了,给个浏览器就能用;但是对于利用本地算力的应用,这些老志强可能就力不从心了,此时就轮到这些“AI PC”发力了。

例如这位朋友的“AI PC”装备的Intel Ultra处理器内置了NPU。NPU(神经处理单元)是大型 SoC 上的专用处理器或处理单元,专为加速神经网络操作和 AI 任务而设计。与通用 CPU 和 GPU 不同,NPU 针对数据驱动的并行计算进行了优化,使其在处理视频和图像等大量多媒体数据以及处理神经网络数据方面非常高效。他们特别擅长处理与 AI 相关的任务,例如语音识别、视频通话中的背景模糊以及物体检测等照片或视频编辑过程。

虽然许多 AI 和机器学习工作负载在 GPU 上运行,但 GPU 和 NPU 之间存在关键区别。GPU 以其并行计算能力而闻名,但并非所有 GPU 在处理图形之外都同样高效。另一方面,NPU 专为神经网络操作中涉及的复杂计算而构建,使其对 AI 任务非常有效。

下面,我们来看看如何通过朋友这颗Intel Core Ultra处理器内置的NPU来加速运行Phi-3模型。

安装Intel NPU 加速库

Intel NPU 加速库 https://github.com/intel/intel-npu-acceleration-library 是一个 Python 库,旨在通过利用Intel神经处理单元 (NPU) 的强大功能在兼容硬件上执行高速计算来提高应用程序的效率。

使用 pip 安装 Python 库

pip install intel-npu-acceleration-library

使用Intel NPU 加速库运行 Phi-3

1、使用Intel NPU 加速库量化原始 Phi-3 模型

from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM,pipelineimport intel_npu_acceleration_libraryimport torchmodel_id = "microsoft/Phi-3-mini-4k-instruct"model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", use_cache=True,trust_remote_code=True).eval()tokenizer = AutoTokenizer.from_pretrained(model_id)print("Compile model for the NPU")model = intel_npu_acceleration_library.compile(model, dtype=torch.float16)

2、量化成功后,继续执行调用 NPU 运行 Phi-3 模型。

pipe = pipeline("text-generation",model=model,tokenizer=tokenizer,)generation_args = {"max_new_tokens": 500,"return_full_text": False,"temperature": 0.0,"do_sample": False,}query = "<|system|>You are a helpful AI assistant.<|end|><|user|>Can you introduce yourself?<|end|><|assistant|>"output = pipe(query, **generation_args)output[0]['generated_text']

3、在执行代码时,我们可以通过任务管理器查看NPU的运行状态:

这篇关于在“AI PC”中使用NPU运行 Phi-3-mini的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018237

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命