在“AI PC”中使用NPU运行 Phi-3-mini

2024-05-31 14:52
文章标签 ai 使用 运行 pc npu mini phi

本文主要是介绍在“AI PC”中使用NPU运行 Phi-3-mini,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的公众号“ONE生产力”,获取更多AI、云计算资讯分享!

前段时间,我做了一系列微软Phi-3-mini小语言模型的教程,很多朋友参考教程进行了实践,其中有一个朋友反馈说模型token推理很慢,没有答道我说的可用程度。我询问了他的硬件配置,他说是才买的联想“AI PC”,配备了Intel Core Ultra 7处理器。这配置可比我用的7840HS强多了,但为何运行效果不佳呢?因为没有正确使用Intel Core Ultra处理器内置的NPU。

什么是NPU?

网上有很多人吐槽“AI PC”,说这个无非是装了一些AI应用,其实和硬件没关系,X79洋垃圾一样可以用。这话对也不对,确实目前大多数AI应用都依赖云服务,说白了,给个浏览器就能用;但是对于利用本地算力的应用,这些老志强可能就力不从心了,此时就轮到这些“AI PC”发力了。

例如这位朋友的“AI PC”装备的Intel Ultra处理器内置了NPU。NPU(神经处理单元)是大型 SoC 上的专用处理器或处理单元,专为加速神经网络操作和 AI 任务而设计。与通用 CPU 和 GPU 不同,NPU 针对数据驱动的并行计算进行了优化,使其在处理视频和图像等大量多媒体数据以及处理神经网络数据方面非常高效。他们特别擅长处理与 AI 相关的任务,例如语音识别、视频通话中的背景模糊以及物体检测等照片或视频编辑过程。

虽然许多 AI 和机器学习工作负载在 GPU 上运行,但 GPU 和 NPU 之间存在关键区别。GPU 以其并行计算能力而闻名,但并非所有 GPU 在处理图形之外都同样高效。另一方面,NPU 专为神经网络操作中涉及的复杂计算而构建,使其对 AI 任务非常有效。

下面,我们来看看如何通过朋友这颗Intel Core Ultra处理器内置的NPU来加速运行Phi-3模型。

安装Intel NPU 加速库

Intel NPU 加速库 https://github.com/intel/intel-npu-acceleration-library 是一个 Python 库,旨在通过利用Intel神经处理单元 (NPU) 的强大功能在兼容硬件上执行高速计算来提高应用程序的效率。

使用 pip 安装 Python 库

pip install intel-npu-acceleration-library

使用Intel NPU 加速库运行 Phi-3

1、使用Intel NPU 加速库量化原始 Phi-3 模型

from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM,pipelineimport intel_npu_acceleration_libraryimport torchmodel_id = "microsoft/Phi-3-mini-4k-instruct"model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", use_cache=True,trust_remote_code=True).eval()tokenizer = AutoTokenizer.from_pretrained(model_id)print("Compile model for the NPU")model = intel_npu_acceleration_library.compile(model, dtype=torch.float16)

2、量化成功后,继续执行调用 NPU 运行 Phi-3 模型。

pipe = pipeline("text-generation",model=model,tokenizer=tokenizer,)generation_args = {"max_new_tokens": 500,"return_full_text": False,"temperature": 0.0,"do_sample": False,}query = "<|system|>You are a helpful AI assistant.<|end|><|user|>Can you introduce yourself?<|end|><|assistant|>"output = pipe(query, **generation_args)output[0]['generated_text']

3、在执行代码时,我们可以通过任务管理器查看NPU的运行状态:

这篇关于在“AI PC”中使用NPU运行 Phi-3-mini的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018237

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传