【强化学习】DPO(Direct Preference Optimization)算法学习笔记

2024-05-31 11:44

本文主要是介绍【强化学习】DPO(Direct Preference Optimization)算法学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【强化学习】DPO(Direct Preference Optimization)算法学习笔记

  • RLHF与DPO的关系
  • KL散度
  • Bradley-Terry模型
  • DPO算法流程
  • 参考文献

RLHF与DPO的关系

  • DPO(Direct Preference Optimization)和RLHF(Reinforcement Learning from Human Feedback)都是用于训练和优化人工智能模型的方法,特别是在大型语言模型的训练中
  • DPO和RLHF都旨在通过人类的反馈来优化模型的表现,它们都试图让模型学习到更符合人类偏好的行为或输出
  • RLHF通常涉及三个阶段:全监督微调(Supervised Fine-Tuning)、奖励模型(Reward Model)的训练,以及强化学习(Reinforcement Learning)的微调
  • DPO是一种直接优化模型偏好的方法,不需要显式地定义奖励函数,而是通过比较不同模型输出的结果,选择更符合人类偏好的结果作为训练目标,主要是通过直接最小化或最大化目标函数来实现优化,利用偏好直接指导优化过程,而不依赖于强化学习框架
    在这里插入图片描述

KL散度

  • KL散度(Kullback-Leibler divergence),也被称为相对熵,是衡量两个概率分布P和Q差异的一种方法
  • 公式: K L ( P ∣ ∣ Q ) = ∑ x P ( x ) log ⁡ ( P ( x ) Q ( x ) ) \mathrm{KL}(P||Q)=\sum_xP(x)\log\left(\frac{P(x)}{Q(x)}\right) KL(P∣∣Q)=xP(x)log(Q(x)P(x))
  • KL散度是不对称的, K L ( P ∣ ∣ Q ) ! = K L ( Q ∣ ∣ P ) KL(P||Q)!=KL(Q||P) KL(P∣∣Q)!=KL(Q∣∣P)

在这里插入图片描述

Bradley-Terry模型

  • Bradley-Terry模型是一种用于比较成对对象并确定相对偏好或能力的方法。这种模型特别适用于对成对比较数据进行分析,从而对一组对象进行排序

  • P ( i > j ) = α i α i + α j P(i{>}j)=\frac{\alpha_i}{\alpha_i{+}\alpha_j} P(i>j)=αi+αjαi

  • α i \alpha_i αi表示第 i i i个元素的能力参数,且大于0。 P ( i > j ) P(i>j) P(i>j)表示第 i i i个元素战胜第 j j j个元素的概率

  • Bradley-Terry模型的参数通常通过最大似然估计(MLE)来确定
    在这里插入图片描述

  • sigmoid函数: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1

  • loss函数的化简
    L o s s = − E ( x , y w , y l ) ∼ D [ ln ⁡ e x p ( r ( x , y w ) ) e x p ( r ( x , y w ) ) + e x p ( r ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ ln ⁡ 1 1 + e x p ( r ( x , y l ) − r ( x , y w ) ) ] = − E ( x , y w , y l ) ∼ D [ ln ⁡ σ ( r ( x , y w ) − r ( x , y l ) ) ] \begin{aligned}Loss &=-\mathbb{E}_{(x,y_{w},y_{l})\sim D}[\ln\frac{exp(r(x,y_{w}))}{exp(r(x,y_{w}))+exp(r(x,y_{l}))}] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim D}[\ln\frac{1}{1 + exp(r(x,y_{l})- r(x,y_{w}))}] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim D}[\ln \sigma(r(x,y_{w})-r(x,y_{l}))] \end{aligned} Loss=E(x,yw,yl)D[lnexp(r(x,yw))+exp(r(x,yl))exp(r(x,yw))]=E(x,yw,yl)D[ln1+exp(r(x,yl)r(x,yw))1]=E(x,yw,yl)D[lnσ(r(x,yw)r(x,yl))]

  • loss函数的目标是优化LLM输出的 y w y_w yw,经过reward计算的得分尽可能的大于 y w y_w yw经过reward计算的得分

在这里插入图片描述

DPO算法流程

  • DPO通过比较不同输出的偏好,构建一个目标函数,该函数直接反映人类的偏好,通常使用排序损失函数(例如Pairwise Ranking Loss),该函数用来衡量模型在用户偏好上的表现
  • DPO优化过程:使用梯度下降等优化算法,直接最小化或最大化目标函数。通过不断调整模型参数,使得模型生成的输出更加符合用户的偏好
    在这里插入图片描述
  • 基准模型一般指经过SFT有监督微调后的模型
  • DPO的目标是尽可能得到多的奖励,同时使得新训练的 模型尽可能与基准模型分布一致

DPO训练目标的化简

在这里插入图片描述
上图中第一步利用的是KL散度的定义,之所以式子中没有KL散度中的 P ( π ( y ∣ x ) ) P(\pi(y|x)) P(π(yx)),是因为KL散度可以理解成是一个概率比值的log的期望,在这里这个概率以期望的形式放到式子左边的期望中了

  • 求最大值 通过在式中加上负号转化为求最小值,并同时除以 β \beta β
  • DPO原论文中的推导过程

在这里插入图片描述

  • 继续推导

在这里插入图片描述
在这里插入图片描述

  • 求解reward函数的表达式,将reward函数的表达式代入loss函数中

在这里插入图片描述

  • DPO loss损失函数的表达形式

在这里插入图片描述

  • logZ(x)项被抵消,于是可以转而用最大似然估计MLE直接在这个概率模型上直接优化LM,去得到希望的最优的π*
    个人理解的一知半解 有时间还是得去看看原论文

参考文献

  1. DPO (Direct Preference Optimization) 算法讲解
  2. Direct Preference Optimization(DPO)学习笔记
  3. DPO原论文 Direct Preference Optimization: Your Language Model is Secretly a Reward Model

这篇关于【强化学习】DPO(Direct Preference Optimization)算法学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017836

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]