【深度学习实战—9】:基于MediaPipe的人脸关键点检测

2024-05-29 12:28

本文主要是介绍【深度学习实战—9】:基于MediaPipe的人脸关键点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✨博客主页:王乐予🎈
✨年轻人要:Living for the moment(活在当下)!💪
🏆推荐专栏:【图像处理】【千锤百炼Python】【深度学习】【排序算法】

目录

  • 😺一、MediaPipe概述
  • 😺二、MediaPipe人脸关键点检测概述
  • 😺三、关键函数
  • 😺四、代码实现
  • 😺五、检测结果

😺一、MediaPipe概述

MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。

MediaPipe目前支持的解决方案(Solution)及支持的平台如下图所示:
在这里插入图片描述

😺二、MediaPipe人脸关键点检测概述

MediaPipe Face Landmarker 任务允许检测图像和视频。可以使用此任务来识别人类的面部表情,应用面部滤镜和效果,并创建虚拟形象。该任务输出 3D 人脸标志。

MediaPipe人脸关键点检测模型包含了478个3D关键点,如下图所示:
在这里插入图片描述
人脸标记使用一系列模型来预进行预测。 第一个模型检测人脸,第二个模型在检测到的人脸上实现定位,第三个模型使用这些标记来识别面部特征。

😺三、关键函数

import mediapipe as mpmp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False,max_num_faces=5,      # Maximum number of detected facesrefine_landmarks=True,min_detection_confidence=0.5,min_tracking_confidence=0.5)

参数解释如下:

  • max_num_faces:要检测的最大人脸数
  • refine_landmarks:是否进一步细化眼睛和嘴唇周围的地标坐标,并输出虹膜周围的其他地标。
  • min_detection_confidence:人脸检测的置信度
  • min_tracking_confidence:人脸跟踪的置信度

😺四、代码实现

import mediapipe as mp
import numpy as np
import cv2mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False,max_num_faces=5,      # Maximum number of detected facesrefine_landmarks=True,    # Whether to further refine the landmark coordinates around the eyes and lipsmin_detection_confidence=0.5,min_tracking_confidence=0.5)mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_stylescap = cv2.VideoCapture(0)while True:ret, img = cap.read()height, width, channels = np.shape(img)img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)results = face_mesh.process(img_RGB)if results.multi_face_landmarks:for face_landmarks in results.multi_face_landmarks:# Draw a facial meshmp_drawing.draw_landmarks(image=img,landmark_list=face_landmarks,connections=mp_face_mesh.FACEMESH_TESSELATION,landmark_drawing_spec=None,connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style())# Draw facial contoursmp_drawing.draw_landmarks(image=img,landmark_list=face_landmarks,connections=mp_face_mesh.FACEMESH_CONTOURS,landmark_drawing_spec=None,connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_contours_style())# Draw iris contoursmp_drawing.draw_landmarks(image=img,landmark_list=face_landmarks,connections=mp_face_mesh.FACEMESH_IRISES,landmark_drawing_spec=None,connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_iris_connections_style())# Draw facial keypoints# if face_landmarks:#     for i in range(478):#         pos_x = int(face_landmarks.landmark[i].x * width)#         pos_y = int(face_landmarks.landmark[i].y * height)#         cv2.circle(img, (pos_x, pos_y), 3, (0, 255, 0), -1)num_faces = len(results.multi_face_landmarks)print(f"Detected {num_faces} faces")cv2.imshow('faces', img)key = cv2.waitKey(1)if key == ord('q'):breakcap.release()

😺五、检测结果

在这里插入图片描述

这篇关于【深度学习实战—9】:基于MediaPipe的人脸关键点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013660

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR