算法训练 | 二叉树Part6 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

本文主要是介绍算法训练 | 二叉树Part6 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

654.最大二叉树

递归法

617.合并二叉树

递归法

迭代法

700.二叉搜索树中的搜索

递归法

迭代法 ⭐

98.验证二叉搜索树

数组法

双指针法 ⭐

迭代法


654.最大二叉树

  • 题目链接:654. 最大二叉树 - 力扣(LeetCode)

  • 文章讲解:代码随想录

递归法
  • 解题思路

    • 构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

  • 解题步骤

    • 确定递归函数的参数和返回值:参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

    • 确定终止条件:题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

    • 确定单层递归的逻辑

      • 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

      • 最大值所在的下标左区间 构造左子树,这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。

      • 判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。

  • 代码一:分割构造

  • class Solution {
    public:TreeNode* constructMaximumBinaryTree(vector<int>& nums) {TreeNode* node = new TreeNode(0);if (nums.size() == 1) {node->val = nums[0];return node;}// 找到数组中最大的值和对应的下标int maxValue = 0;int maxValueIndex = 0;for (int i = 0; i < nums.size(); i++) {if (nums[i] > maxValue) {maxValue = nums[i];maxValueIndex = i;}}node->val = maxValue;// 最大值所在的下标左区间 构造左子树if (maxValueIndex > 0) {vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);node->left = constructMaximumBinaryTree(newVec);}// 最大值所在的下标右区间 构造右子树if (maxValueIndex < (nums.size() - 1)) {vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());node->right = constructMaximumBinaryTree(newVec);}return node;}
    };

617.合并二叉树

  • 题目链接:leetcode.cn

  • 文章讲解:代码随想录

递归法
  • 解题步骤

    • 确定递归函数的参数和返回值:首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

    • 确定终止条件:因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

    • 确定单层递归的逻辑:重复利用t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。那么单层递归中,就要把两棵树的元素加到一起。接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。最终t1就是合并之后的根节点。

  • 代码注意

    • 注意终止条件

  • 代码一:前序遍历 ⭐

// 修改了t1的结构
class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1// 修改了t1的数值和结构t1->val += t2->val;                             // 中t1->left = mergeTrees(t1->left, t2->left);      // 左t1->right = mergeTrees(t1->right, t2->right);   // 右return t1;}
};
// 不修改t1和t2的结构,重新定义一个树
class Solution {public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2;if (t2 == NULL) return t1;// 重新定义新的节点,不修改原有两个树的结构TreeNode* root = new TreeNode(0);root->val = t1->val + t2->val;root->left = mergeTrees(t1->left, t2->left);root->right = mergeTrees(t1->right, t2->right);return root;}};return root;}
};
迭代法
  • 解题思路

    • 求二叉树对称的时候就是把两个树的节点同时加入队列进行比较。使用队列,模拟的层序遍历。

  • 代码一:层序遍历

class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2;if (t2 == NULL) return t1;queue<TreeNode*> que;que.push(t1);que.push(t2);while(!que.empty()) {TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();// 此时两个节点一定不为空,val相加node1->val += node2->val;// 如果两棵树左节点都不为空,加入队列if (node1->left != NULL && node2->left != NULL) {que.push(node1->left);que.push(node2->left);}// 如果两棵树右节点都不为空,加入队列if (node1->right != NULL && node2->right != NULL) {que.push(node1->right);que.push(node2->right);}// 当t1的左节点 为空 t2左节点不为空,就赋值过去if (node1->left == NULL && node2->left != NULL) {node1->left = node2->left;}// 当t1的右节点 为空 t2右节点不为空,就赋值过去if (node1->right == NULL && node2->right != NULL) {node1->right = node2->right;}}return t1;}
};

700.二叉搜索树中的搜索

  • 题目链接:700. 二叉搜索树中的搜索 - 力扣(LeetCode)

  • 文章讲解:代码随想录

递归法

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

  • 它的左、右子树也分别为二叉搜索树

  • 解题思路

    • 二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

  • 解题步骤

    • 确定递归函数的参数和返回值:递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

    • 确定终止条件:如果root为空,或者找到这个数值了,就返回root节点。

    • 确定单层递归的逻辑:看看二叉搜索树的单层递归逻辑有何不同。因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

  • 代码一:递归

  • class Solution {
    public:TreeNode* searchBST(TreeNode* root, int val) {if (root == NULL || root->val == val) return root;TreeNode* result = NULL;if (root->val > val) result = searchBST(root->left, val);if (root->val < val) result = searchBST(root->right, val);return result;}
    };
迭代法
  • 解题思路

    • 因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。

    • 对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。

    • 而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

    • 例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了

  • 代码注意

    • (root != NULL)不科研!root

  • 代码一:迭代

class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {while (root != NULL) {if (root->val > val) root = root->left;else if (root->val < val) root = root->right;else return root;}return NULL;}
};

98.验证二叉搜索树

  • 题目链接:98. 验证二叉搜索树 - 力扣(LeetCode)

  • 文章讲解:代码随想录

数组法
  • 解题思路

    • 中序遍历下,输出的二叉搜索树节点的数值是有序序列。

    • 有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

  • 解题步骤

    • 归中序遍历将二叉搜索树转变成一个数组

    • 比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素。

  • 代码一:前序递归数组存放

class Solution {
private:vector<int> vec;void traversal(TreeNode* root) {if (root == NULL) return;traversal(root->left);vec.push_back(root->val); // 将二叉搜索树转换为有序数组traversal(root->right);}
public:bool isValidBST(TreeNode* root) {vec.clear(); // 不加这句在leetcode上也可以过,但最好加上traversal(root);for (int i = 1; i < vec.size(); i++) {// 注意要小于等于,搜索树里不能有相同元素if (vec[i] <= vec[i - 1]) return false;}return true;}
};
双指针法
  • 解题思路

    • 在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

    • 避免 初始化最小值,用前一个节点数值来比较。

  • 解题步骤:

    • 确定递归函数,返回值以及参数:输入节点,返回验证结果

    • 确定终止条件:如果是空节点 是二叉搜索树

    • 确定单层递归的逻辑:中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。

  • 代码注意

    • pre = root;在判断外

    • 定义bool最后返回 return left && right;

  • 代码一:双指针优化

class Solution {
public:TreeNode* pre = NULL; // 用来记录前一个节点bool isValidBST(TreeNode* root) {if (root == NULL) return true;bool left = isValidBST(root->left);if (pre != NULL && pre->val >= root->val) return false;pre = root; // 记录前一个节点bool right = isValidBST(root->right);return left && right;}
};
迭代法
  • 解题思路

    • 可以用迭代法模拟二叉树中序遍历

    • 迭代法中序遍历稍加改动

  • 代码一:迭代

class Solution {
public:bool isValidBST(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur = root;TreeNode* pre = NULL; // 记录前一个节点while (cur != NULL || !st.empty()) {if (cur != NULL) {st.push(cur);cur = cur->left;                // 左} else {cur = st.top();                 // 中st.pop();if (pre != NULL && cur->val <= pre->val)return false;pre = cur; //保存前一个访问的结点cur = cur->right;               // 右}}return true;}
};

(说明:基于代码随想录课程学习,部分内容引用代码随想录文章)

这篇关于算法训练 | 二叉树Part6 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011568

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python实现合并与拆分多个PDF文档中的指定页

《Python实现合并与拆分多个PDF文档中的指定页》这篇文章主要为大家详细介绍了如何使用Python实现将多个PDF文档中的指定页合并生成新的PDF以及拆分PDF,感兴趣的小伙伴可以参考一下... 安装所需要的库pip install PyPDF2 -i https://pypi.tuna.tsingh

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为