算法训练 | 二叉树Part6 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

本文主要是介绍算法训练 | 二叉树Part6 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

654.最大二叉树

递归法

617.合并二叉树

递归法

迭代法

700.二叉搜索树中的搜索

递归法

迭代法 ⭐

98.验证二叉搜索树

数组法

双指针法 ⭐

迭代法


654.最大二叉树

  • 题目链接:654. 最大二叉树 - 力扣(LeetCode)

  • 文章讲解:代码随想录

递归法
  • 解题思路

    • 构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

  • 解题步骤

    • 确定递归函数的参数和返回值:参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

    • 确定终止条件:题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

    • 确定单层递归的逻辑

      • 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

      • 最大值所在的下标左区间 构造左子树,这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。

      • 判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。

  • 代码一:分割构造

  • class Solution {
    public:TreeNode* constructMaximumBinaryTree(vector<int>& nums) {TreeNode* node = new TreeNode(0);if (nums.size() == 1) {node->val = nums[0];return node;}// 找到数组中最大的值和对应的下标int maxValue = 0;int maxValueIndex = 0;for (int i = 0; i < nums.size(); i++) {if (nums[i] > maxValue) {maxValue = nums[i];maxValueIndex = i;}}node->val = maxValue;// 最大值所在的下标左区间 构造左子树if (maxValueIndex > 0) {vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);node->left = constructMaximumBinaryTree(newVec);}// 最大值所在的下标右区间 构造右子树if (maxValueIndex < (nums.size() - 1)) {vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());node->right = constructMaximumBinaryTree(newVec);}return node;}
    };

617.合并二叉树

  • 题目链接:leetcode.cn

  • 文章讲解:代码随想录

递归法
  • 解题步骤

    • 确定递归函数的参数和返回值:首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

    • 确定终止条件:因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

    • 确定单层递归的逻辑:重复利用t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。那么单层递归中,就要把两棵树的元素加到一起。接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。最终t1就是合并之后的根节点。

  • 代码注意

    • 注意终止条件

  • 代码一:前序遍历 ⭐

// 修改了t1的结构
class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1// 修改了t1的数值和结构t1->val += t2->val;                             // 中t1->left = mergeTrees(t1->left, t2->left);      // 左t1->right = mergeTrees(t1->right, t2->right);   // 右return t1;}
};
// 不修改t1和t2的结构,重新定义一个树
class Solution {public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2;if (t2 == NULL) return t1;// 重新定义新的节点,不修改原有两个树的结构TreeNode* root = new TreeNode(0);root->val = t1->val + t2->val;root->left = mergeTrees(t1->left, t2->left);root->right = mergeTrees(t1->right, t2->right);return root;}};return root;}
};
迭代法
  • 解题思路

    • 求二叉树对称的时候就是把两个树的节点同时加入队列进行比较。使用队列,模拟的层序遍历。

  • 代码一:层序遍历

class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2;if (t2 == NULL) return t1;queue<TreeNode*> que;que.push(t1);que.push(t2);while(!que.empty()) {TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();// 此时两个节点一定不为空,val相加node1->val += node2->val;// 如果两棵树左节点都不为空,加入队列if (node1->left != NULL && node2->left != NULL) {que.push(node1->left);que.push(node2->left);}// 如果两棵树右节点都不为空,加入队列if (node1->right != NULL && node2->right != NULL) {que.push(node1->right);que.push(node2->right);}// 当t1的左节点 为空 t2左节点不为空,就赋值过去if (node1->left == NULL && node2->left != NULL) {node1->left = node2->left;}// 当t1的右节点 为空 t2右节点不为空,就赋值过去if (node1->right == NULL && node2->right != NULL) {node1->right = node2->right;}}return t1;}
};

700.二叉搜索树中的搜索

  • 题目链接:700. 二叉搜索树中的搜索 - 力扣(LeetCode)

  • 文章讲解:代码随想录

递归法

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

  • 它的左、右子树也分别为二叉搜索树

  • 解题思路

    • 二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

  • 解题步骤

    • 确定递归函数的参数和返回值:递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

    • 确定终止条件:如果root为空,或者找到这个数值了,就返回root节点。

    • 确定单层递归的逻辑:看看二叉搜索树的单层递归逻辑有何不同。因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

  • 代码一:递归

  • class Solution {
    public:TreeNode* searchBST(TreeNode* root, int val) {if (root == NULL || root->val == val) return root;TreeNode* result = NULL;if (root->val > val) result = searchBST(root->left, val);if (root->val < val) result = searchBST(root->right, val);return result;}
    };
迭代法
  • 解题思路

    • 因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。

    • 对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。

    • 而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

    • 例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了

  • 代码注意

    • (root != NULL)不科研!root

  • 代码一:迭代

class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {while (root != NULL) {if (root->val > val) root = root->left;else if (root->val < val) root = root->right;else return root;}return NULL;}
};

98.验证二叉搜索树

  • 题目链接:98. 验证二叉搜索树 - 力扣(LeetCode)

  • 文章讲解:代码随想录

数组法
  • 解题思路

    • 中序遍历下,输出的二叉搜索树节点的数值是有序序列。

    • 有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

  • 解题步骤

    • 归中序遍历将二叉搜索树转变成一个数组

    • 比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素。

  • 代码一:前序递归数组存放

class Solution {
private:vector<int> vec;void traversal(TreeNode* root) {if (root == NULL) return;traversal(root->left);vec.push_back(root->val); // 将二叉搜索树转换为有序数组traversal(root->right);}
public:bool isValidBST(TreeNode* root) {vec.clear(); // 不加这句在leetcode上也可以过,但最好加上traversal(root);for (int i = 1; i < vec.size(); i++) {// 注意要小于等于,搜索树里不能有相同元素if (vec[i] <= vec[i - 1]) return false;}return true;}
};
双指针法
  • 解题思路

    • 在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

    • 避免 初始化最小值,用前一个节点数值来比较。

  • 解题步骤:

    • 确定递归函数,返回值以及参数:输入节点,返回验证结果

    • 确定终止条件:如果是空节点 是二叉搜索树

    • 确定单层递归的逻辑:中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。

  • 代码注意

    • pre = root;在判断外

    • 定义bool最后返回 return left && right;

  • 代码一:双指针优化

class Solution {
public:TreeNode* pre = NULL; // 用来记录前一个节点bool isValidBST(TreeNode* root) {if (root == NULL) return true;bool left = isValidBST(root->left);if (pre != NULL && pre->val >= root->val) return false;pre = root; // 记录前一个节点bool right = isValidBST(root->right);return left && right;}
};
迭代法
  • 解题思路

    • 可以用迭代法模拟二叉树中序遍历

    • 迭代法中序遍历稍加改动

  • 代码一:迭代

class Solution {
public:bool isValidBST(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur = root;TreeNode* pre = NULL; // 记录前一个节点while (cur != NULL || !st.empty()) {if (cur != NULL) {st.push(cur);cur = cur->left;                // 左} else {cur = st.top();                 // 中st.pop();if (pre != NULL && cur->val <= pre->val)return false;pre = cur; //保存前一个访问的结点cur = cur->right;               // 右}}return true;}
};

(说明:基于代码随想录课程学习,部分内容引用代码随想录文章)

这篇关于算法训练 | 二叉树Part6 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011568

相关文章

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python视频剪辑合并操作的实现示例

《Python视频剪辑合并操作的实现示例》很多人在创作视频时都需要进行剪辑,本文主要介绍了Python视频剪辑合并操作的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录介绍安装FFmpegWindowsMACOS安装MoviePy剪切视频合并视频转换视频结论介绍

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第