本文主要是介绍RK3568笔记二十七:LPRNet车牌识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
若该文为原创文章,转载请注明原文出处。
记录自训练并在RK3568上部署。
一、介绍
LPRNet的Pytorch实现,一种高性能和轻量级的车牌识别框架。完全适用于中国车牌识别(Chinese License Plate Recognition)及国外车牌识别!
目前仅支持同时识别蓝牌和绿牌,即新能源车牌等中国车牌,但可通过扩展训练数据或微调支持其他类型车牌及提高识别准确率!
该网络的特点:
1、不需要对字符进行预分割,是一个端到端的轻量化字符识别模型,速度快,精度还不错;这里主要是因为仿照squeezenet和inception的思想设计了一个轻量化的卷积模块。
2、仿照的还是经典的CRNN+CTC的思路,不过LPRNet首次将RNN删除了,整个网络只有CNN+CTC Loss。但是也不是说不要上下文信息,只是舍弃了BiLSTM那样的RNN提取上下文,而是在backbone的末尾使用了一个13x1的卷积模块提取序列方向(w)的上下文信息。而且在backbone外还额外使用一个全连接层进行全局上下文特征提取,提取之后再和backbone进行concat特征融合,再输入head。
3、损失使用的CTC Loss、推理应用了贪心算法,搜索取每个位置上类概率的最大值。
二、环境
1、开发板:ATK-DLRK3568
2、系统:buildroot
3、训练环境:Autodl
三、训练和测试
1、训练测试环境搭建
1、创建虚拟环境
conda create -n LRPNet_env python=3.8
2、激活
conda activate LRPNet_env
3、下载代码
git clone https://github.com/sirius-ai/LPRNet_Pytorch.git
注意,使用git克隆方式,不要自己下载解压,经测试自己下载解压文本格式会不同,运行会出错
4、安装依赖项
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install imutils
pip install opencv-python
安装后执行测试命令
python test_LPRNet.py
在测试过程中出错了下面的错误:
出错1:
ValueError: num_samples should be a positive integer value, but got num_samples=0
pytorch报错:ValueError: num_samples should be a positive integer value, but got num_samp=0-CSDN博客
shuffle的参数设置错误导致,因为已经有batch_sample了,就不需要shuffle来进行随机的sample了,所以在这里的shuffle应该设置为FALSE才对。
修改:
train_LPRNET.py的208行,TRUE改成False
batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn))
出错2:
python 代码遇到 float division by zero 怎么解决?-CSDN博客
File "train_LPRNet.py", line 261, in Greedy_Decode_Eval Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2) ZeroDivisionError: float division by zero
处理:
if Tp + Tn_1 + Tn_2 == 0:Acc = 0 # 或者 Acc = 1,根据实际需求设置
else:Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)
出错3:
File "train_LPRNet.py", line 268, in Greedy_Decode_Eval print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets))) ZeroDivisionError: float division by zero
处理:
if len(datasets) == 0:print("[Info] 数据集为空,无法计算测试速度")
else:print("[Info] Test Speed: {}s 1/{}".format((t2 - t1) / len(datasets), len(datasets)))
出错4:
AttributeError: module 'numpy' has no attribute 'int'. np.int
was a deprecated alias for the builtin int
. To avoid this error in existing code, use int
by itself. Doing this will not modify any behavior and is safe. When replacing np.int
, you may wish to use e.g. np.int64
or np.int32
to specify the precision. If you wish to review your current use, check the release note link for additional information.
处理:
pip install numpy==1.19.0
再次执行上面命令
运行正常
2、训练
训练按readme执行下面命令:
python train_LPRNet.py
但执行后会出错
原因是没有训练的数据集,为了测试,使用的是自带的测试数据集
python train_LPRNet.py --train_img_dirs ./data/test/
默认训练只有15轮,数据集也不对,所以测试结果无法作准。
3、测试
自带的show显示不能使用,原因是没有插件,修改了显示的内容
修改test_LPRNet.py文件下的show函数
def show(img, label, target):img = np.transpose(img, (1, 2, 0))img *= 128.img += 127.5img = img.astype(np.uint8)lb = ""for i in label:lb += CHARS[i]tg = ""for j in target.tolist():tg += CHARS[int(j)]flag = "F"if lb == tg:flag = "T"# img = cv2.putText(img, lb, (0,16), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.6, (0, 0, 255), 1)img = cv2ImgAddText(img, lb, (0, 0))#cv2.imshow("test", img)cv2.imwrite("test.jpg", img)print("target: ", tg, " ### {} ### ".format(flag), "predict: ", lb)#cv2.waitKey()#cv2.destroyAllWindows()
执行下面命令,执行是正常的,但模型不对,原因是数据集太少。
python test_LPRNet.py --show 1
使用官方给的模型,识别率还是挺好的。
官方训练集2W多张,自行训练测试。测试增加到1000轮,有部分可以识别了。
四、导出onnx
创建export_onnx.py文件,内容如下:
import torch.nn as nn
import torch
import os
import sys
import urllib
import urllib.request
import time
import traceback
import numpy as npMODEL_DIR = './weights/'
MODEL_PATH = MODEL_DIR + 'Final_LPRNet_model.pth'# Convert maxpool3d to the class of maxpool2d
class maxpool_3d(nn.Module):def __init__(self, kernel_size, stride):super(maxpool_3d, self).__init__()assert(len(kernel_size)==3 and len(stride)==3)kernel_size2d1 = kernel_size[-2:]stride2d1 = stride[-2:]kernel_size2d2 = (kernel_size[0],kernel_size[0])stride2d2 = (kernel_size[0], stride[0])self.maxpool1 = nn.MaxPool2d(kernel_size=kernel_size2d1, stride=stride2d1)self.maxpool2 = nn.MaxPool2d(kernel_size=kernel_size2d2, stride=stride2d2)def forward(self,x):x = self.maxpool1(x)x = x.transpose(1,3)x = self.maxpool2(x)x = x.transpose(1,3)return x class small_basic_block(nn.Module):def __init__(self, ch_in, ch_out):super(small_basic_block, self).__init__()self.block = nn.Sequential(nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),nn.ReLU(),nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),nn.ReLU(),nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),nn.ReLU(),nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),)def forward(self, x):return self.block(x)class LPRNet(nn.Module):def __init__(self, class_num, dropout_rate):super(LPRNet, self).__init__()self.class_num = class_numself.backbone = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0nn.BatchNorm2d(num_features=64),nn.ReLU(), # 2maxpool_3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),small_basic_block(ch_in=64, ch_out=128), # *** 4 ***nn.BatchNorm2d(num_features=128),nn.ReLU(), # 6maxpool_3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),small_basic_block(ch_in=64, ch_out=256), # 8nn.BatchNorm2d(num_features=256),nn.ReLU(), # 10small_basic_block(ch_in=256, ch_out=256), # *** 11 ***nn.BatchNorm2d(num_features=256), # 12nn.ReLU(),maxpool_3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14nn.Dropout(dropout_rate),nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16nn.BatchNorm2d(num_features=256),nn.ReLU(), # 18nn.Dropout(dropout_rate),nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20nn.BatchNorm2d(num_features=class_num),nn.ReLU(), # *** 22 ***)self.container = nn.Sequential(nn.Conv2d(in_channels=256+class_num+128+64, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),)def forward(self, x):keep_features = list()for i, layer in enumerate(self.backbone.children()):x = layer(x)if i in [2, 6, 13, 22]: keep_features.append(x)global_context = list()for i, f in enumerate(keep_features):if i in [0, 1]:f = nn.AvgPool2d(kernel_size=5, stride=5)(f)if i in [2]:f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)f_pow = torch.pow(f, 2)f_mean = torch.mean(f_pow)f = torch.div(f, f_mean)global_context.append(f)x = torch.cat(global_context, 1)x = self.container(x)logits = torch.mean(x, dim=2)return logitsdef readable_speed(speed):speed_bytes = float(speed)speed_kbytes = speed_bytes / 1024if speed_kbytes > 1024:speed_mbytes = speed_kbytes / 1024if speed_mbytes > 1024:speed_gbytes = speed_mbytes / 1024return "{:.2f} GB/s".format(speed_gbytes)else:return "{:.2f} MB/s".format(speed_mbytes)else:return "{:.2f} KB/s".format(speed_kbytes)def show_progress(blocknum, blocksize, totalsize):speed = (blocknum * blocksize) / (time.time() - start_time)speed_str = " Speed: {}".format(readable_speed(speed))recv_size = blocknum * blocksizef = sys.stdoutprogress = (recv_size / totalsize)progress_str = "{:.2f}%".format(progress * 100)n = round(progress * 50)s = ('#' * n).ljust(50, '-')f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)f.flush()f.write('\r\n')def check_and_download_origin_model():global start_timeif not os.path.exists(MODEL_PATH):print('--> Download {}'.format(MODEL_PATH))url = 'https://github.com/sirius-ai/LPRNet_Pytorch/raw/master/weights/Final_LPRNet_model.pth'download_file = MODEL_PATHtry:start_time = time.time()urllib.request.urlretrieve(url, download_file, show_progress)except:print('Download {} failed.'.format(download_file))print(traceback.format_exc())exit(-1)print('done')if __name__ == "__main__":# Download model if not exist (from https://github.com/sirius-ai/LPRNet_Pytorch/blob/master/weights)check_and_download_origin_model()device = torch.device('cpu')lprnet = LPRNet(class_num=68, dropout_rate=0).to(device)lprnet.load_state_dict(torch.load('./weights/Final_LPRNet_model.pth'))lprnet.eval()torch.onnx.export(lprnet, torch.randn(1,3,24,94), MODEL_DIR + 'lprnet.onnx', export_params=True, input_names = ['input'], output_names = ['output'], )if os.path.exists(MODEL_DIR + 'lprnet.onnx'):print('onnx model had been saved in '+ MODEL_DIR + 'lprnet.onnx')else:print('export onnx failed!')
执行后导出ONNX
python export_onnx.py
五、部署
环境搭建,自行参考前面博客搭建。
下载rknn_model_zoo到虚拟机
把上面生成的onnx拷贝到/home/alientek/rknn_model_zoo/examples/LPRNet/model目录下。
1、导出RKNN模型
python convert.py ../model/lprnet.onnx rk3568
2、板载测试
1、修改GCC_COMPILER
export GCC_COMPILER=/opt/atk-dlrk356x-toolchain/usr/bin/aarch64-buildroot-linux-gnu
修改成自己的路径
2、编译
./build-linux.sh -t rk356x -a aarch64 -d LPRNet
3、运行
把编译后的执行文件通过adb或tftp上传到板子
运行下面命令测试
./rknn_lprnet_demo ./model/lprnet.rknn ./model/test.jpg
接下来使用结合yolov5把框检测出来在识别。
如有侵权,或需要完整代码,请及时联系博主。
这篇关于RK3568笔记二十七:LPRNet车牌识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!