AGI系列(1):掌握AI大模型提示词优化术,提问准确率飙升秘籍

2024-05-27 00:20

本文主要是介绍AGI系列(1):掌握AI大模型提示词优化术,提问准确率飙升秘籍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们向AI大模型提问时,通常人们的做法是有什么问题,就直接去问,得到大模型的回复结果,时好时坏,完全没有可控性。
那么有没有一种方式或是一套方法,可以让我们向大模型提问时,得到的结果更准确,实际上是是有的,我们本文就来探讨下。

例子引入

我们来举个具体的例子:

场景:
假设你是一名社交媒体经理,你需要帮助起草一篇 Facebook 帖子来宣传你公司的新产品。

那么通常的做法,我们会是,直接向大模型提问:

Prompt:
写一篇Facebook帖子为我公司的新产品做广告。我公司的名字叫Alpha,产品叫Beta,一种新型的超快吹风机。

我们用 GPT-4o 来输出答案:

亲爱的网友们,我很高兴能在这里向大家介绍Alpha公司新推出的产品——Beta超快吹风机!Beta不仅仅是一款吹风机,它是我们对美与速度的独特诠释。这款产品采用尖端科技,能以迅雷不及掩耳之势将你的头发吹干。更不用说,Beta能在保护你的发丝免受热损的前提下,而实现快速吹干。我们Beta的设计理念是结合速度与舒适,我们相信,通过使用Beta,你也将能享受到这种特别的体验。在早上忙碌的日程中,或是赶着出门的时候,Beta都将是你的最佳伴侣。我们在Alpha,始终坚持以客户满意度为中心的服务理念,Beta正是对此承诺的实现。所以,尝试一下吧,让我们的Beta超快吹风机带给你的生活更多的便利和乐趣。期待您的反馈,让我们共同体验以客户为中心的Alpha服务。#Alpha #Beta超快吹风机。

不错,GPT-4o 能够很好的输出想要的内容。但是总感觉有点差强人意,机翻,没有人情味和个性化的感觉。

那么有没有一套可以遵循的方法来解决这个问题呢?

有的,现在,我就来介绍这个方法:CO-STAR 法

可复用方法的介绍

CO-STAR 法其实是一套框架,用框架或模板的方式来撰写提示词。

其组成可用如下图表示:

在这里插入图片描述
CO-STAR 是结构化的Prompt模版六大要素的首字母缩写,即:

(C) Context 上下文:为任务提供背景信息 通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。

(O) Objective 目标:明确你要求大语言模型完成的任务 清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。

(S) Style 风格:明确你期望的写作风格 你可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。这将指导大语言模型以一种符合你需求的方式和词汇选择进行回应。

(T) Tone 语气:设置回应的情感调 设定适当的语气,确保大语言模型的回应能够与预期的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。

(A) Audience 受众:识别目标受众 针对特定受众定制大语言模型的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。

(R) Response响应:规定输出的格式 确定输出格式是为了确保大语言模型按照你的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON 格式是理想的选择。

复用方法之后的效果

我们来看看效果如何:

提示词:

# CONTEXT #
我想为我公司的新产品做广告。我公司的名字叫Alpha,产品叫Beta,是一种新型的超快吹风机。# OBJECTIVE #
为我创建一个Facebook帖子,旨在让人们点击产品链接进行购买。# STYLE #
遵循成功公司为类似产品做广告的写作风格,比如戴森。# TONE #
有说服力的# AUDIENCE #
我公司在Facebook上的受众群通常是老一辈。定制你的帖子,以针对这些受众在头发产品中通常想要的东西。# RESPONSE #
Facebook上的帖子简洁而有影响力。

GPT-4o 的输出:

🎉🎉【Alpha公司新品发布】🎉🎉致亲爱的朋友们,我们很高兴地向您推出我们新一代的产品——Beta超快吹风机!💖💖沿着戴森的卓越传统,Beta吹风机结合了快速、高效和温柔-全部装在一台设计精美的工具里。😲您是否厌倦了等待头发干燥的漫长时间?是否在寻找一款吹风机,既可以快速干燥头发,又能全程呵护秀发,避免发质受损?Beta是您一直在寻找的答案!❤️👏它速度快,能够在最短的时间内达到最佳的干燥效果。更重要的是,我们的独家温控科技确保了温度始终适中,既不会对头发造成损害,也不会让您的头皮感到不适。👍✨走到人群中,洋溢着自信,让人眼前一亮的那个人,就是您!点击下方的链接,立即购买我们的Beta超快吹风机,走在最前端的流行趋势上,给您的日常生活带来便利!💃🕺Alpha公司与您一起,让美丽变得如此简单!🌺💖[产品链接]立即行动,让我们一起享受快乐,享受美丽,享受生活吧!💝

可以看出,应用了CO-STARPrompt的输出更加有针对性,也更具体,有效。

这篇关于AGI系列(1):掌握AI大模型提示词优化术,提问准确率飙升秘籍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006004

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选