应用爬山算法做文本数据的挖掘和分析

2024-05-27 00:12

本文主要是介绍应用爬山算法做文本数据的挖掘和分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       爬山算法是一种启发式搜索算法,用于求解优化问题。它从一个初始解开始,逐步通过比较当前解与其邻域解的优劣来选择下一个可能更优的解,直到达到一个局部最优解或者无法进一步改进为止。爬山算法的核心思想是“贪心”,即每一步都选择能使目标函数值增加最多的方向前进。

基本原理

爬山算法从一个随机选定的点开始,然后在每一步中选择当前点的邻居中能最大化目标函数的点作为新的当前点。这个过程会一直持续,直到达到一个局部最大值,即周围的邻居都没有比当前点更好的解。

优缺点

  • 优点
    • 简单易实现:算法逻辑简单,容易编码实现。
    • 计算效率高:在合适的问题上能快速找到解。
  • 缺点
    • 容易陷入局部最优:由于算法本质上是贪心的,容易在复杂的搜索空间中陷入局部最优。
    • 对初始解敏感:算法的最终结果很大程度上取决于初始解的选取。

写一个爬山算法应用在文本数据的挖掘和分析,如关键词提取和信息检索的小例子。

package mainimport ("fmt""github.com/yanyiwu/gojieba""math""math/rand""sort""strings""time"
)// 文档集合
var documents = []string{"我爱北京天安门","北京天安门上太阳升","伟大领袖毛主席","指引我们向前进",
}// 预先分词并存储结果
var tokenizedDocs [][]stringfunc init() {seg := gojieba.NewJieba()tokenizedDocs = make([][]string, len(documents))for i, doc := range documents {tokenizedDocs[i] = seg.Cut(doc, true)}
}// 计算TF-IDF值
func calculateTFIDF(word string, docs [][]string) float64 {// 计算词频(TF)tf := float64(countOccurrences(word, docs)) / float64(len(docs))// 计算逆文档频率(IDF)idf := math.Log(float64(len(docs)) / float64(countDocumentsWithWord(word, docs)))// 计算TF-IDFreturn tf * idf
}// 统计单词在所有文档中出现的次数
func countOccurrences(word string, docs [][]string) int {count := 0for _, words := range docs {for _, w := range words {if w == word {count++}}}return count
}// 统计包含特定单词的文档数量
func countDocumentsWithWord(word string, docs [][]string) int {count := 0for _, words := range docs {for _, w := range words {if w == word {count++break}}}return count
}// 爬山算法
func hillClimbing(docs [][]string, maxIterations int) []string {// 获取所有唯一的单词uniqueWords := getUniqueWords(docs)// 随机选择一组初始关键词currentKeywords := getRandomKeywords(uniqueWords, 5)for i := 0; i < maxIterations; i++ {// 计算当前关键词集的TF-IDF总和currentScore := 0.0for _, keyword := range currentKeywords {currentScore += calculateTFIDF(keyword, docs)}// 尝试替换一个关键词for j := 0; j < len(currentKeywords); j++ {newKeywords := make([]string, len(currentKeywords))copy(newKeywords, currentKeywords)newKeywords[j] = uniqueWords[rand.Intn(len(uniqueWords))]// 计算新关键词集的TF-IDF总和newScore := 0.0for _, keyword := range newKeywords {newScore += calculateTFIDF(keyword, docs)}// 如果新关键词集更好,则更新当前关键词集if newScore > currentScore {currentKeywords = newKeywordsbreak}}}return currentKeywords
}// 获取所有文档中的唯一单词
func getUniqueWords(docs [][]string) []string {uniqueWordsMap := make(map[string]struct{})for _, words := range docs {for _, word := range words {uniqueWordsMap[word] = struct{}{}}}uniqueWords := make([]string, 0, len(uniqueWordsMap))for word := range uniqueWordsMap {uniqueWords = append(uniqueWords, word)}return uniqueWords
}// 从唯一单词中随机选择指定数量的关键词
func getRandomKeywords(uniqueWords []string, numKeywords int) []string {if numKeywords > len(uniqueWords) {numKeywords = len(uniqueWords)}keywords := make([]string, numKeywords)perm := rand.Perm(len(uniqueWords))for i := 0; i < numKeywords; i++ {keywords[i] = uniqueWords[perm[i]]}return keywords
}func main() {// 初始化随机种子rand.Seed(time.Now().UnixNano())// 运行爬山算法bestKeywords := hillClimbing(tokenizedDocs, 1000)// 输出结果fmt.Printf("Best keywords found: %v\n", bestKeywords)
}

代码逻辑:

  1. 爬山算法 hillClimbing()‌:

    • 获取所有唯一的单词。
    • 随机选择一组初始关键词。
    • 对于指定的迭代次数:
      • 计算当前关键词集的TF-IDF总和。
      • 尝试替换一个关键词。
      • 如果新关键词集的TF-IDF总和更高,则更新当前关键词集。
    • 返回最终的关键词集。
  2. 辅助函数

    • calculateTFIDF():计算给定单词的TF-IDF值。
    • countOccurrences():统计单词在所有文档中出现的次数。
    • countDocumentsWithWord():统计包含特定单词的文档数量。
    • getUniqueWords():获取所有文档中的唯一单词。
    • getRandomKeywords():从唯一单词中随机选择指定数量的关键词。  

运行结果:

Best keywords found: [爱 前进 太阳升 向 我们]

这篇关于应用爬山算法做文本数据的挖掘和分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005982

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第