应用爬山算法做文本数据的挖掘和分析

2024-05-27 00:12

本文主要是介绍应用爬山算法做文本数据的挖掘和分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       爬山算法是一种启发式搜索算法,用于求解优化问题。它从一个初始解开始,逐步通过比较当前解与其邻域解的优劣来选择下一个可能更优的解,直到达到一个局部最优解或者无法进一步改进为止。爬山算法的核心思想是“贪心”,即每一步都选择能使目标函数值增加最多的方向前进。

基本原理

爬山算法从一个随机选定的点开始,然后在每一步中选择当前点的邻居中能最大化目标函数的点作为新的当前点。这个过程会一直持续,直到达到一个局部最大值,即周围的邻居都没有比当前点更好的解。

优缺点

  • 优点
    • 简单易实现:算法逻辑简单,容易编码实现。
    • 计算效率高:在合适的问题上能快速找到解。
  • 缺点
    • 容易陷入局部最优:由于算法本质上是贪心的,容易在复杂的搜索空间中陷入局部最优。
    • 对初始解敏感:算法的最终结果很大程度上取决于初始解的选取。

写一个爬山算法应用在文本数据的挖掘和分析,如关键词提取和信息检索的小例子。

package mainimport ("fmt""github.com/yanyiwu/gojieba""math""math/rand""sort""strings""time"
)// 文档集合
var documents = []string{"我爱北京天安门","北京天安门上太阳升","伟大领袖毛主席","指引我们向前进",
}// 预先分词并存储结果
var tokenizedDocs [][]stringfunc init() {seg := gojieba.NewJieba()tokenizedDocs = make([][]string, len(documents))for i, doc := range documents {tokenizedDocs[i] = seg.Cut(doc, true)}
}// 计算TF-IDF值
func calculateTFIDF(word string, docs [][]string) float64 {// 计算词频(TF)tf := float64(countOccurrences(word, docs)) / float64(len(docs))// 计算逆文档频率(IDF)idf := math.Log(float64(len(docs)) / float64(countDocumentsWithWord(word, docs)))// 计算TF-IDFreturn tf * idf
}// 统计单词在所有文档中出现的次数
func countOccurrences(word string, docs [][]string) int {count := 0for _, words := range docs {for _, w := range words {if w == word {count++}}}return count
}// 统计包含特定单词的文档数量
func countDocumentsWithWord(word string, docs [][]string) int {count := 0for _, words := range docs {for _, w := range words {if w == word {count++break}}}return count
}// 爬山算法
func hillClimbing(docs [][]string, maxIterations int) []string {// 获取所有唯一的单词uniqueWords := getUniqueWords(docs)// 随机选择一组初始关键词currentKeywords := getRandomKeywords(uniqueWords, 5)for i := 0; i < maxIterations; i++ {// 计算当前关键词集的TF-IDF总和currentScore := 0.0for _, keyword := range currentKeywords {currentScore += calculateTFIDF(keyword, docs)}// 尝试替换一个关键词for j := 0; j < len(currentKeywords); j++ {newKeywords := make([]string, len(currentKeywords))copy(newKeywords, currentKeywords)newKeywords[j] = uniqueWords[rand.Intn(len(uniqueWords))]// 计算新关键词集的TF-IDF总和newScore := 0.0for _, keyword := range newKeywords {newScore += calculateTFIDF(keyword, docs)}// 如果新关键词集更好,则更新当前关键词集if newScore > currentScore {currentKeywords = newKeywordsbreak}}}return currentKeywords
}// 获取所有文档中的唯一单词
func getUniqueWords(docs [][]string) []string {uniqueWordsMap := make(map[string]struct{})for _, words := range docs {for _, word := range words {uniqueWordsMap[word] = struct{}{}}}uniqueWords := make([]string, 0, len(uniqueWordsMap))for word := range uniqueWordsMap {uniqueWords = append(uniqueWords, word)}return uniqueWords
}// 从唯一单词中随机选择指定数量的关键词
func getRandomKeywords(uniqueWords []string, numKeywords int) []string {if numKeywords > len(uniqueWords) {numKeywords = len(uniqueWords)}keywords := make([]string, numKeywords)perm := rand.Perm(len(uniqueWords))for i := 0; i < numKeywords; i++ {keywords[i] = uniqueWords[perm[i]]}return keywords
}func main() {// 初始化随机种子rand.Seed(time.Now().UnixNano())// 运行爬山算法bestKeywords := hillClimbing(tokenizedDocs, 1000)// 输出结果fmt.Printf("Best keywords found: %v\n", bestKeywords)
}

代码逻辑:

  1. 爬山算法 hillClimbing()‌:

    • 获取所有唯一的单词。
    • 随机选择一组初始关键词。
    • 对于指定的迭代次数:
      • 计算当前关键词集的TF-IDF总和。
      • 尝试替换一个关键词。
      • 如果新关键词集的TF-IDF总和更高,则更新当前关键词集。
    • 返回最终的关键词集。
  2. 辅助函数

    • calculateTFIDF():计算给定单词的TF-IDF值。
    • countOccurrences():统计单词在所有文档中出现的次数。
    • countDocumentsWithWord():统计包含特定单词的文档数量。
    • getUniqueWords():获取所有文档中的唯一单词。
    • getRandomKeywords():从唯一单词中随机选择指定数量的关键词。  

运行结果:

Best keywords found: [爱 前进 太阳升 向 我们]

这篇关于应用爬山算法做文本数据的挖掘和分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005982

相关文章

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Jmeter如何向数据库批量插入数据

《Jmeter如何向数据库批量插入数据》:本文主要介绍Jmeter如何向数据库批量插入数据方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Jmeter向数据库批量插入数据Jmeter向mysql数据库中插入数据的入门操作接下来做一下各个元件的配置总结Jmete

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C