网络空间安全数学基础·整除与同余

2024-05-25 23:20

本文主要是介绍网络空间安全数学基础·整除与同余,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要内容:
整除的基本概念(掌握)
素数(掌握)
同余的概念(掌握)

1.1整除

定义:设a,b是任意两个整数,其中b≠0,如果存在一个整数q,使 a = qb,则我们称b整除a,或a被b整除,记为b|a,此时称 b是a的因子,a是b的倍数。

例:a=10, b=2则有2|10;若a=100, b=10有10|100

例:设a是整数,a≠0, 则a|0。

整除的基本性质:
1. 如果b|a且a|b,则b = a或b = -a。

2. 如果a|b且b|c,则a|c。

3. 如果c|a且c|b,则c|ua+vb,其中u,v是整数。

整除的基本性质(补充):
(1) a|b<=>-a|b<=>a|-b<=>-a|-b<=>|a| | |b|
(2) b≠0且a|b => |a|≤|b|

带余除法:当两个整数不能整除时,我们有带余除法:
定义:对于a,b两个整数,其中b≠0,则存在唯一q,r使得:a=bq+r,0 ≤ r<|b|。r称为a被b除得到的余数, 当r = 0时,b|a。

例:

1)a = –37, b= 5,则–37 = (-8)×5+3,q=8,r=3

2)a = 67,b= 7,则67=(9)×(7)+4,q=9, r=4

最大公因子:
定义:
1) 设a,b是两个整数,如果整数c|a且c|b,则c称为a,b的公因子。
2) 设c>0是两个不全为零的整数a,b的公因子,如果a,b的任何公因子都整除c,则c称为a,b的最大公因子,记为c=(a,b)。

最大公因子性质:
1.(a,b)=(-a,b)=(a,-b)=(-a,-b)=(|a|,|b|)
2.(0,a)=a

最大公因子(求解)

例:(-3824,1837)

最大公因子定理:
定理:设a,b是两个不全为零的整数,则存在两个整数u, v,使得:(a, b)=ua+vb。

例:将a = 888,b = 312的最大公因子表示为(a,b) = ua+vb。

1.2互素 

定义:设a,b是两个不全为0的整数,如果(a, b)=1,则称a,b互素。

推论:a, b互素的充分必要条件是:存在u,v,使ua+vb=1。

互素性质:
1) 如果c|ab且(c, a) = 1,则c|b 。

2) 如果a|c,b|c,且(a, b) = 1,则ab|c 。

3) 如果(a,c) = 1,(b,c) = 1,则(ab,c) =1 。

最小公倍数:
定义:
1) 设a, b是两个不等于零的整数.如果a|d,b|d,则称d是a和b的公倍数。
2) a和b的正公倍数中最小的称为a和b的最小公倍数,记为[a,b] 。

最小公倍数性质:
[a,b] = [–a,b] = [a,–b] = [–a,–b] = [|a|,|b|]

例:a = 2,b = 3.它们的公倍数集合为{0,±6,±12,±18,…}.而[2,3] = 6 。

最小公倍数与最大公因子关系:
定理:
1) 设d是a,b的任意公倍数,则[a, b] | d 。
2),特别地,如果(a, b) = 1, [a, b] = |ab|。

1.3素数

定义:如果一个大于1的整数p除±1和±p外无其他因子,则p称为一个素数,否则称为合数。

定理:设p是一个素数,则
1) 对任意整数a,如果p不整除a,则(p,a) = 1。
2) 如果p|ab,则p|a,或p|b。

算术基本定理:
定理:每个大于1的整数a都可以分解为有限个素数的乘积:a=p1p2…pr。该分解除素数因子的排列外是唯一的。

标准因子分解式:
由于p1,p2,…,pr中可能存在重复,所以a的分解式可表示为有限个素数的幂的乘积:,这称为a的标准因子分解式。

例:2100的标准因子分解式:

素数无穷个:
定理:素数有无穷多个。

Eratosthenes筛法:
定理:设a是任意大于1的整数,则a的除1外最小正因子q是一素数,并且当a是一合数时,

对于一般N,Eratosthenes筛法可表述如下:
第1步 找出的全部素数:p1,p2,…,pm。
第2步 在1~N中分别划去p1,p2,…,pm全部倍数。
第2步完成后剩下的数除1外就是不超过N的全部素数。

筛法原理如下:对于一个数a≤N,如果p1,p2,…,pm都不整除a,则a是素数。这是因为如果a是合数,则由定理它必有一素因子在p1,p2,…,pm中。

例:求不超过100的全部素数。

同理可以将因子5,7的倍数划去: (3) 划去5的全部倍数: (4) 划去7的全部倍数。

最终经过上述步骤后剩下的数除1外就是不超过100的全部素 数: (25个)    2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

1.4 同余

定义:给定一个称为模的正整数m。如果m除整数a,b得相同的余数,即a=q1m+r,b=q2m+r,0≤ r小于等于m, 则称a和b关于模m同余,记为 a≡b (mod m)

例:25≡1(mod 8),16≡-5(mod 7)。

定理:整数a,b对模m同余的充分必要条件是:m|(a-b),即a = b+mt,t是整数。

同余性质及推论:

推论:如果a1≡b1 (mod m),a2≡b2 (mod m),则:

快速指数算法

例1-16:求解 2^64 (mod 641)

这篇关于网络空间安全数学基础·整除与同余的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002897

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

2024网安周今日开幕,亚信安全亮相30城

2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席2024年国家网络安全宣传周开幕式和主论坛,并将通过线下宣讲、创意科普、成果展示等多种形式,让广大民众看得懂、记得住安全知识,同时还