浅析Rust多线程中如何安全的使用变量

2025-01-28 16:50

本文主要是介绍浅析Rust多线程中如何安全的使用变量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下...

在Rust语言中,一个既引人入胜又可能带来挑战的特性是闭包如何从其所在环境中捕获变量,尤其是在涉及多线程编程的情境下。

如果尝试在不使用move关键字的情况下创建新线程并传递数据至闭包内,编译器将很可能返回一系列与生命周期借用规则所有权相关的复杂错误信息。

不过,这种机制虽然增加了学习曲线,但也确保了内存安全与并发执行中的数据一致性。

本文我们将探讨如何在线程的闭包中安全的使用变量,包括共享变量和修改变量。

1. 向线程传递变量

首先,我们构造一个简单的示例,在线程中正常使用一个外部的变量,看看Rust中能否正常编译运行。

use std::thread;

fn main() {
    let msg = String::from("Hello World!");

    let handle = thread::spawn(|| {
        // msg 是主线中定义android的变量
        println!("{}", msg);
    });

    handle.join().unwrap();
}

例子非常简单,看着写法也没什么问题,在其他编程语言中类似的写法是没有问题的。

但是,使用cargo run运行时,却有如下的错误:

浅析Rust多线程中如何安全的使用变量

为什么会有这样的错误?这就是Rust在内存方面更加严谨的原因。

上面Rust的错误信息中也给出了原因,总结起来主要有两点:

  • 线程的生命周期www.chinasem.cn新创建的线程的生命周期有可能超出主函数 main 的执行范围。当 main 函数终止时,与之相关的局部变量(也就是msg)将超出作用域。
  • 不符合借用规则:在 Rust 中,引用的生命周期不会超过其所指向数据的生命周期,以避免出现悬空引用。如果main提前结束,那么线程中China编程的msg将成为悬空引用

修复的方法很简单,使用move关键字,将变量的所有权转移到线程中就可以了。

    let handle = thread::spawn(move || {
        // msg 是主线中定义的变量
        println!("{}", msg);
    });

这样就可以正常运行了。

浅析Rust多线程中如何安全的使用变量

不过,这样,主线程中就无法使用变量msg了,比如在main函数的最后打印msg,会报错,因为它的所有权已经转移到线程中了。

2. 多线程共享变量引用

如果我们只把变量的引用转移给线程,是不是可以在主线程main中继续使用变量msg呢?

use std::thread;

fn main() {
    let China编程msg = String::from("Hello World!");
    let msg_ref = &msg;

    let handle = {

        thread::spawn(move || {
            // msg 是主线中定义的变量
            println!("{}", msg_ref);
        })
    };

    handle.join().unwrap();

    println!("msg in main : {}", msg_ref);
}

很遗憾,依然有错误:

浅析Rust多线程中如何安全的使用变量

错误的原因仍然是传入线程中的变量引用msg_ref生命周期的不够长。

虽然我们使用了move,将msg_ref转移到线程中,但main中仍然拥有底层的数据msg

一旦main函数结束(javascript或者数据在线程完成之前超出范围),该引用(msg_ref)指向数据将失去有效的内存,成为悬空引用

总的来说就是:

  • 移动引用并不移动原始数据-只转移引用本身的所有权
  • 实际数据(msg)仍然由原始范围拥有,并具有自己的生命周期约束

为了修复这个错误,就要用到Rust中提供的并发原语Arc(一种自动引用计数的智能指针)。

先看看使用Arc修改后的例子。

use std::sync::Arc;
use std::thread;

fn main() {
    let msg = String::from("Hello World!");
    // 通过Arc来创建变量的引用
    let msg_ref = Arc::new(msg);

    // 线程1
    let handle_1 = {
        // move 之前,先使用Arc clone 变量
        let msg_thread = Arc::clone(&msg_ref);

        thread::spawn(move || {
            println!("Thread 1: {}", msg_thread);
        })
    };

    // 线程2
    let handle_2 = {
        let msg_thread = Arc::clone(&msg_ref);

        thread::spawn(move || {
            println!("Thread 2: {}", msg_thread);
        }) 
    };

    handle_1.join().unwrap();
    handle_2.join().unwrap();

    // 主线程中依然可以使用变量
    println!("msg in main : {}", msg_ref);
}

使用Arc修改之后,变量不仅可以在多个线程中共享,主线程中也可以使用。

浅析Rust多线程中如何安全的使用变量

3. 多线程中修改变量

上面的示例是在多个线程中共享变量,如果想要修改变量的话,那么就会出现数据竞争的情况。

这时,就要用到Rust的另一个并发原语Mutex

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
    // 创建一个被Mutex保护的共享数据,这里是一个i32类型的数字
    let shared_number = Arc::new(Mutex::new(0));

    // 定义一个线程向量,用于存储创建的线程
    let mut threads = Vec::new();

    // 创建10个线程,每个线程对共享数据进行1000次递增操作
    for _ in 0..10 {
        // 克隆Arc,使得每个线程都拥有一个指向共享数据的引用
        let num_clone = Arc::clone(&shared_number);
        let handle = thread::spawn(move || {
            // 尝试获取Mutex的锁,这是一个阻塞操作,如果锁不可用,线程会等待
            let mut num = num_clone.lock().unwrap();
            for _ in 0..1000 {
                *num += 1;
            }
        });
        threads.push(handle);
    }

    // 等待所有线程完成操作
    for handle in threads {
        handle.join().unwrap();
    }

    // 获取最终的共享数据值并打印
    let final_num = shared_number.lock().unwrap();
    println!("最终10个线程的累加结果: {}", final_num);
}

在这个示例中:

  • 首先创建了一个Arc<Mutex<i32>>类型的共享数据,Arc用于在多个线程间共享MutexMutex用于保护内部的i32数据。
  • 循环创建10个线程,每个线程都克隆了Arc并尝试获取Mutex的锁。一旦获取到锁,线程就可以安全地对共享数据进行递增操作。
  • 主线程使用join方法等待所有子线程完成操作。
  • 最后,主线程获取并打印共享数据的最终值。由于Mutex的保护,多个线程对共享数据的操作不会产生数据竞争,保证了数据的一致性。

运行结果:

浅析Rust多线程中如何安全的使用变量

10个线程,每个累加1000,所以最后结果是1000*10=10000

4. 总结

从上面的例子可以看出,Rust的闭包捕获规则最初可能感觉很严格,但它们在确保内存安全数据竞争自由方面至关重要。

总之,

如果需要在另一个线程中拥有数据,考虑使用move

如果需要跨线程共享数据,考虑使用Arc

如果需要跨线程共享和修改数据,考虑使用Arc+Mutex

到此这篇关于浅析Rust多线程中如何安全的使用变量的文章就介绍到这了,更多相关Rust多线程使用变量内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于浅析Rust多线程中如何安全的使用变量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153256

相关文章

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的