实战之快速完成 ChatGLM3-6B 在 GPU-8G的 INT4 量化和本地部署

2024-05-25 07:28

本文主要是介绍实战之快速完成 ChatGLM3-6B 在 GPU-8G的 INT4 量化和本地部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGLM3 (ChatGLM3-6B)

项目地址

https://github.com/THUDM/ChatGLM3

大模型是很吃CPU和显卡的,所以,要不有一个好的CPU,要不有一块好的显卡,显卡尽量13G+,内存基本要32GB+。
清华大模型分为三种(ChatGLM3-6B-Base,ChatGLM3-6B,ChatGLM3-6B-32K)
dd032091c280d455facca120b02fcd28.png
从上图也可以看到,ChatGLM3-6B-32K的话是最高配的模型,而ChatGLM3-6B-Base是最低配的模型。
一般会选择 ChatGLM3-6B普通模型来使用,当然,如果配置高,可以用32K的,会更好。

使用方式

环境安装

首先需要下载本仓库:

# 可以访问github的话,直接git clone即可
git clone https://github.com/THUDM/ChatGLM3
# 如果不能访问的话,利用代理加速, 使用下面命令即可
git clone https://www.gitclone.com/github.com/THUDM/ChatGLM3
cd ChatGLM3

我是安装在Conda虚拟环境下, Conda的搭建安装可以参考我的【Win安装Conda及其环境配置(包含pip、conda换源)】

第一步,创建虚拟环境

请安装 Anaconda,然后用下面的命令创建名为 chatglm3 的虚拟环境:

conda create --name chatglm3 python=3.10
conda activate chatglm3
第二步,然后使用 pip 安装依赖:
pip install -r requirements.txt
# 国内建议使用指定国内镜像进行安装
pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple
第三步,安装 pytorch

为了保证 torch 的版本正确,请严格按照 官方文档 的说明安装。
查看本机显卡驱动和cuda版本

nvcc --versionnvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0nvidia-smiThu May 23 09:57:00 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 551.61                 Driver Version: 551.61         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                     TCC/WDDM  | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1070 Ti   WDDM  |   00000000:01:00.0  On |                  N/A |
|  0%   50C    P8              9W /  180W |     777MiB /   8192MiB |      6%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
# 安装对应pytorch版本命令
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia# 查找torch是否安装成功
import torch
print(torch.__version__) 
print(torch.cuda.is_available()) # True
print(torch.version.cuda) 
第四步,下载模型

可以从Huggingface, Modelsope, SwanHub三个平台下载模型。
使用 Huggingface 下载模型

git lfs install
git clone https://huggingface.co/THUDM/chatglm3-6b.git

使用 Modelscope 下载模型,没工具的情况下,用Modelscope下载最快

git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

使用 SwanHub 下载模型

git lfs install
git clone https://swanhub.co/ZhipuAI/chatglm3-6b.git
第五步,使用本地模型运行示例
5.1、基本对话示例

模型路径: E:\AI\code\models\chatglm3-6b,修改basic_demo目录中的cli_demo.py、web_demo_gradio.py、web_demo_streamlit.py模型路径代码。

# cli_demo.py、web_demo_gradio.py、web_demo_streamlit.py
MODEL_PATH = os.environ.get('MODEL_PATH', 'E:\\AI\\code\\models\\chatglm3-6b')
5.2、低成本部署
模型量化

默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:

model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).quantize(4).cuda()

模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。

CPU 部署

如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).float()
Mac 部署

对于搭载了 Apple Silicon 或者 AMD GPU 的 Mac,可以使用 MPS 后端来在 GPU 上运行 ChatGLM3-6B。需要参考 Apple 的 官方说明 安装 PyTorch-Nightly(正确的版本号应该是2.x.x.dev2023xxxx,而不是 2.x.x)。
目前在 MacOS 上只支持从本地加载模型。将代码中的模型加载改为从本地加载,并使用 mps 后端:

model = AutoModel.from_pretrained("your local path", trust_remote_code=True).to('mps')

加载半精度的 ChatGLM3-6B 模型需要大概 13GB 内存。内存较小的机器(比如 16GB 内存的 MacBook Pro),在空余内存不足的情况下会使用硬盘上的虚拟内存,导致推理速度严重变慢。

5.3、命令行demo
python basic_demo/cli_demo.py

这篇关于实战之快速完成 ChatGLM3-6B 在 GPU-8G的 INT4 量化和本地部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000854

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

如何用GPU算力卡P100玩黑神话悟空?

精力有限,只记录关键信息,希望未来能够有助于其他人。 文章目录 综述背景评估游戏性能需求显卡需求CPU和内存系统需求主机需求显式需求 实操硬件安装安装操作系统Win11安装驱动修改注册表选择程序使用什么GPU 安装黑神话悟空其他 综述 用P100 + PCIe Gen3.0 + Dell720服务器(32C64G),运行黑神话悟空画质中等流畅运行。 背景 假设有一张P100-