参数估计 mle Maximum likelihood estimates mle是有偏估计 fitdist 对数据进行概率分布对象拟合 histfit 具有分布拟合的直方图 fitdist和histfit是无偏估计,这两者区别在于histfit直接画出直方图。 支持的分布点这里 非参数估计 ksdensity Kernel smoothing function estimate for u
###Z=X+Y型概率密度的求解### @(概率论) Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y) 总结过一次,一般方法是可以由分布函数再求导得到概率密度,计算一定更要小心才能得到正确的解。 F Z ( z ) = P ( Z ≤ z ) = P ( g ( X , Y ) ≤ z ) = ∫ ∫ g ( x , y ) ≤ z f ( x , y ) d x
概率密度图是用来表示连续型数据的分布情况的一种图形化方法。它通过在数据的取值范围内绘制一条曲线来描述数据的分布情况,曲线下的面积代表了在该范围内观察到某一数值的概率。具体来说,对于给定的连续型数据,概率密度图会使用核密度估计(Kernel Density Estimation,KDE)等方法来估计数据的概率密度函数。然后,在数据的取值范围内绘制一条平滑的曲线,曲线在不同取值处的高度表示了该取值出