基于注意力整合的超声图像分割信息在乳腺肿瘤分类中的应用 摘要引言方法 Segmentation information with attention integration for classification of breast tumor in ultrasound image 摘要 乳腺癌是世界范围内女性最常见的癌症之一。基于超声成像的计算机辅助诊断(CAD)技术的发展
DBU-Net:用于乳腺超声图像中肿瘤分割的双分支U形网络 摘要引言材料和方法概述所提出的方法 DBU-Net Dual branch U-Net for tumor segmentation in breast ultrasound images 摘要 乳腺超声医学图像通常具有低成像质量沿着不清楚的目标边界。这些问题使得医生在诊断患者时准确识别和概述肿瘤具有挑战性。由于精确
ESTAN:用于乳腺超声图像分割的增强型小肿瘤感知网络 摘要引言 ESTAN Enhanced Small Tumor-Aware Network for Breast Ultrasound Image Segmentation 摘要 乳腺肿瘤分割是用于乳腺癌检测的计算机辅助诊断(CAD)系统中的关键任务,因为准确的肿瘤大小、形状和位置对于进一步的肿瘤量化和分类是重要的。然而
Symmetry-based regularization in deep breast cancer screening ResultsDatasetExperimentMethod数据增强不变性正则化损失等变体系结构 因为我做的是弱标签的图像分类,所以我只关心全图的信息,Results等只是全图的信息。 Results modelinput sizeACC模型集成输入类
BTS-GAN: Computer-aided segmentation system for breast tumor using MRI and conditional adversarial networks BTS-GAN:基于MRI和条件对抗性网络的乳腺肿瘤计算机辅助分割系统背景贡献实验方法Parallel dilated convolution module(并行扩展卷积模块)
ATTransUNet 期刊分析摘要贡献方法整体框架1. Global Guidance Block2. Spatial-wise Global Guidance Block3. Channel-wise Global Guidance Block4. Breast Lesion Boundary Detection Module 实验1. 对比实验2. 消融实验2.1 Ablation A