Python机器学习入门1.2《良、恶性乳腺肿瘤预测》

2023-12-07 15:10

本文主要是介绍Python机器学习入门1.2《良、恶性乳腺肿瘤预测》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在看这篇博客之前,你应该先看我的上一篇博客Python机器学习入门1.1《良、恶性乳腺肿瘤预测》

监督学习之分类学习:

线性分类器: 这里用到的是Logistic函数,在本篇中不打算细讲,有兴趣可以去了解。

First:良、恶性肿瘤数据预处理

我们进入数据的网页查看:
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

可以看到中间有的数据含有?,因此 需要将其替换为标准缺失值,并丢弃。

data数据结果:

代码如下: 

 

#导入相关包
import pandas as pd
import numpy as np#创建特征列表
column_names=['Sample code number','Clump Thickness','Uniformity Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']#从互联网读取指定数据
data=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',names=column_names)#将?替换为标准缺失值表示
data=data.replace(to_replace='?',value=np.nan)#丢失带有缺失值的数据(只要有一个维度有缺失)
data=data.dropna(how='any')#输出data的数据量和维度
data.shape
print(data.shape)

 准备良、恶性乳腺癌肿瘤训练、测试数据:

#分割数据
from sklearn.cross_validation import train_test_split#随机采样25%数据用于测试,剩下的75%用于构建训练集合
X_train, X_test, y_train, y_test=train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25, random_state=33)#查验训练样本的数量和类别分布
print(y_train.value_counts())#查验测试样本的数量和类别分布
print(y_test.value_counts())

使用线性分类模型从事良、恶性肿瘤预测任务:


#使用线性分类模型从事良、恶性肿瘤预测任务
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
#标准化测试数据,保证每个维度方差为1,均值为0.使得预测结果不会被某些维度过大的特征值而主导
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.fit_transform(X_test)#初始化LogisticRegression 和 SGDClassifier
lr=LogisticRegression()
sgdc=SGDClassifier()#调用LogisticRegression中的fit函数、模块用来训练模型参数
lr.fit(X_train,y_train)#使用训练好的模型lr对X_test进行预测,结果储存在变量lr_y_predict中
lr_y_predict=lr.predict(X_test)#调用SGDClassifier中的fit函数、模块用来训练模型参数
sgdc.fit(X_train,y_train)
#使用训练好的模型sgdc对X_test进行预测,结果储存在变量sgdc_y_predict中
sgdc_y_predict=sgdc.predict(X_test)

 使用线性分类模型从事良、恶性肿瘤预测任务的性能分析:


#使用逻辑斯蒂回归模型自带的评分函数score获得模型在测试集上的准确性结果
print('Accurary of LR Classifier:',lr.score(X_test,y_test))
from sklearn.metrics import classification_report
#利用classification_report 模块获得LogisticRegression其他三个指标的结果
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))#使用随机梯度下降模型自带的评分函数score获得模型在测试集上的准确性的结果
print('Accuarcy SGD Classifier:',sgdc.score(X_test,y_test))
#利用classification_report模块SGDClassifier其他三个指标的结果
print(classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant']))

最后一个结果如下:

这篇关于Python机器学习入门1.2《良、恶性乳腺肿瘤预测》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466337

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模