Python机器学习入门1.2《良、恶性乳腺肿瘤预测》

2023-12-07 15:10

本文主要是介绍Python机器学习入门1.2《良、恶性乳腺肿瘤预测》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在看这篇博客之前,你应该先看我的上一篇博客Python机器学习入门1.1《良、恶性乳腺肿瘤预测》

监督学习之分类学习:

线性分类器: 这里用到的是Logistic函数,在本篇中不打算细讲,有兴趣可以去了解。

First:良、恶性肿瘤数据预处理

我们进入数据的网页查看:
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

可以看到中间有的数据含有?,因此 需要将其替换为标准缺失值,并丢弃。

data数据结果:

代码如下: 

 

#导入相关包
import pandas as pd
import numpy as np#创建特征列表
column_names=['Sample code number','Clump Thickness','Uniformity Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']#从互联网读取指定数据
data=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',names=column_names)#将?替换为标准缺失值表示
data=data.replace(to_replace='?',value=np.nan)#丢失带有缺失值的数据(只要有一个维度有缺失)
data=data.dropna(how='any')#输出data的数据量和维度
data.shape
print(data.shape)

 准备良、恶性乳腺癌肿瘤训练、测试数据:

#分割数据
from sklearn.cross_validation import train_test_split#随机采样25%数据用于测试,剩下的75%用于构建训练集合
X_train, X_test, y_train, y_test=train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25, random_state=33)#查验训练样本的数量和类别分布
print(y_train.value_counts())#查验测试样本的数量和类别分布
print(y_test.value_counts())

使用线性分类模型从事良、恶性肿瘤预测任务:


#使用线性分类模型从事良、恶性肿瘤预测任务
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
#标准化测试数据,保证每个维度方差为1,均值为0.使得预测结果不会被某些维度过大的特征值而主导
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.fit_transform(X_test)#初始化LogisticRegression 和 SGDClassifier
lr=LogisticRegression()
sgdc=SGDClassifier()#调用LogisticRegression中的fit函数、模块用来训练模型参数
lr.fit(X_train,y_train)#使用训练好的模型lr对X_test进行预测,结果储存在变量lr_y_predict中
lr_y_predict=lr.predict(X_test)#调用SGDClassifier中的fit函数、模块用来训练模型参数
sgdc.fit(X_train,y_train)
#使用训练好的模型sgdc对X_test进行预测,结果储存在变量sgdc_y_predict中
sgdc_y_predict=sgdc.predict(X_test)

 使用线性分类模型从事良、恶性肿瘤预测任务的性能分析:


#使用逻辑斯蒂回归模型自带的评分函数score获得模型在测试集上的准确性结果
print('Accurary of LR Classifier:',lr.score(X_test,y_test))
from sklearn.metrics import classification_report
#利用classification_report 模块获得LogisticRegression其他三个指标的结果
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))#使用随机梯度下降模型自带的评分函数score获得模型在测试集上的准确性的结果
print('Accuarcy SGD Classifier:',sgdc.score(X_test,y_test))
#利用classification_report模块SGDClassifier其他三个指标的结果
print(classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant']))

最后一个结果如下:

这篇关于Python机器学习入门1.2《良、恶性乳腺肿瘤预测》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466337

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.