【乳腺肿瘤诊断分类及预测】基于Elman神经网络

2024-01-31 11:28

本文主要是介绍【乳腺肿瘤诊断分类及预测】基于Elman神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课题名称:基于Elman神经网络的乳腺肿瘤诊断分类及预测

版本日期:2023-05-15

运行方式: 直接运行Elman0501.m 文件即可

代码获取方式:私信博主或QQ:491052175

模型描述

威斯康辛大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10 个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度〉,这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性的。

算法流程:

1. 数据采集:

将乳腺肿瘤病灶组织的细胞核显微图像的1 0 个量化特征作为网络的输入,良性乳腺肿瘤和恶性乳腺肿瘤这两种类别作为网络的输出。共有乳腺癌数据集共包括569 个病例,其中, 良性357 例, 恶性212 例。随机选取500 组数据作为训练集,剩余69 组作为测试集。每个病例的一组数据包括采样组织中各细胞核的10 个特征量的平均值、标准差和最坏值(各特征的3 个最大数据的平均值)共30 个数据。数据文件中每组数据共分32 个字段,第l个字段为病例编号;第2 个字段为确诊结果, B 为良性, M 为恶性(数据中1为良性,2为恶性);第3~ 12 个字段是该病例肿瘤病灶组织的各细胞核显微图像的10 个量化特征的平均值;第1 3 ~ 22 个字段是相应的标准差;第2 3 ~32 个字段是相应的最坏值。 (打开data.mat文件可以看仿真数据)

2. 网络创建:

数据采集后,利用Matlab自带的神经网络工具箱中的函数newelm()可以构建一个elman神经网络。其调用格式为net=newelm(PR,[S1,S2...,SN1],{},BTF,BLF,PF,IPF,OPF)。其中PR为R组输入元素的最小值和最大值的设定值,R*2维的矩阵,T为SN*Q2的具有SN个元素的输出矩阵;Si为第i层的长度;TFi为第i层的船体函数,默认值:隐含层为'tansig',输出层为'purelin';BTF为反向传播神经网络训练函数,默认值为'trainlm';BLF为反向传播神经网络权值、阈值学习函数,默认值为'learngdm';PF为性能函数,默认值为'mse',IPF为输入处理函数,默认值为:{fixunknowns','removeconstantrows ',' mapminmax'};OPF为输出处理函数,默认值为'{'removeconstantrows ',' mapminmax'}'

3. 网络训练:

网络创建完毕后,若需要,还可以对神经网络的参数进行设置和修改,随机选择训练集的500个病例的数据作为训练数据输入到网络,便可以对网络进行训练。

4. 网络仿真:

网络通过训练后,将测试数据集的69组的10个量化特征数据输入到网络里,便可以得到对应的输出(即分类)。

5. 结果分析

通过对网络仿真结果的分析,可以得到误诊率(包括良心被误诊为恶性及恶性被误诊为良性),从而可以对该方法的可行性进行评价。

特殊说明:
神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值。

Matlab仿真结果:

基于Elman神经网络的乳腺肿瘤诊断分类与预测的仿真结果

训练误差随着迭代次数的变化

基于Elman神经网络的分类预测结果

基于Elman神经网卡的分类预测误差

这篇关于【乳腺肿瘤诊断分类及预测】基于Elman神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663595

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

PMP–一、二、三模–分类–14.敏捷–技巧–原型MVP

文章目录 技巧一模14.敏捷--原型法--项目生命周期--迭代型生命周期,通过连续的原型或概念验证来改进产品或成果。每个新的原型都能带来新的干系人新的反馈和团队见解。题目中明确提到需要反馈,因此原型法比较好用。23、 [单选] 一个敏捷团队的任务是开发一款机器人。项目经理希望确保在机器人被实际建造之前,团队能够收到关于需求的早期反馈并相应地调整设计。项目经理应该使用以下哪一项来实现这个目标?