GG-Net: 超声图像中乳腺病变分割的全局指导网络

2023-10-10 06:36

本文主要是介绍GG-Net: 超声图像中乳腺病变分割的全局指导网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ATTransUNet

  • 期刊分析
    • 摘要
    • 贡献
    • 方法
      • 整体框架
      • 1. Global Guidance Block
      • 2. Spatial-wise Global Guidance Block
      • 3. Channel-wise Global Guidance Block
      • 4. Breast Lesion Boundary Detection Module
    • 实验
      • 1. 对比实验
      • 2. 消融实验
        • 2.1 Ablation Analysis of our GG-Net
        • 2.2 Ablation Analysis of our BD-Module
  • 可借鉴参考

期刊分析

期刊名: Medical Image Analysis
期刊信息: IF: 10.9; JCR: Q1; 中科院一区Top
投稿周期: 本篇: Publised 2021.5
网站统计:录用比例:约25%; 审稿周期:约5月
其余信息: LetPub
该论文有代码,可复现学习

摘要

超声波自动乳腺病灶分割有助于诊断乳腺癌,这是影响全球女性的可怕疾病之一。由于固有的散斑伪影、模糊的乳腺病变边界以及乳腺病变区域内的不均匀强度分布,从超声图像中准确分割乳腺区域是一项具有挑战性的任务。最近,卷积神经网络(CNN)在医学图像分割任务中表现出了显着的效果。然而,CNN 中的卷积运算通常集中于局部区域,其捕获输入超声图像的远程依赖性的能力有限,导致乳腺病变分割精度下降。在本文中,我们开发了一种配备全局引导块(GGB)和乳腺病灶边界检测(BD)模块的深度卷积神经网络,用于增强乳腺超声病灶分割。 GGB 利用多层集成特征图作为指导信息来学习空间域和通道域的远程非局部依赖关系。 BD 模块学习额外的乳腺病变边界图,以提高分割结果细化的边界质量。在公共数据集和收集的数据集上的实验结果表明,我们的网络在乳腺超声病变分割方面优于其他医学图像分割方法和最近的语义分割方法。此外,我们还展示了我们的网络在超声前列腺分割上的应用,其中我们的方法比最先进的网络更好地识别前列腺区域。


贡献

  1. 首先,我们提出了一个具有全局引导块(GGB)的 CNN(表示为 GG-Net),在多层集成特征的指导下聚合空间和通道域中的非局部特征,以学习强大的非局部上下文信息。
  2. 其次,我们在浅层 CNN 层中开发了乳腺病变边界检测(BD)模块,以嵌入额外的乳腺病变边界图,以获得具有高质量边界的分割结果。
  3. 第三,两个超声乳腺病变数据集的实验结果表明,我们的网络在乳腺病变分割方面优于最先进的医学图像分割方法。
  4. 此外,我们还展示了我们的网络在超声前列腺分割上的应用,我们的网络获得了令人满意的性能。

方法

整体框架

在这里插入图片描述

是2021年的文章,那个时候还不流行将SA嵌入到模型中。因此文章更多的创新点还是落在了增加模型感受野(ASPP)、使用注意力机制(通道注意力和空间注意力)、使用深监督(多层边界监督)

1. Global Guidance Block

在这里插入图片描述

1. 网络的特征提取部分是ResNext,然后将四个层的特征图通过1×1卷积核上下采样都变为2-th层的特征图大小,通道数为1
2. 将四个特征通道上拼接传到瓶颈层,与瓶颈层输出模块一起传入到GG-Block中进行特征指导
3. 先采用空间维度上的指导,再经过通道维度上的指导

2. Spatial-wise Global Guidance Block

在这里插入图片描述
1. 输入是两个特征,使用常规的通道变化,尺寸变换,激活函数,得到空间权重
2. 将权重与输入的X相乘进行指导,最后在加上一个残差

3. Channel-wise Global Guidance Block

在这里插入图片描述
1. 传入的是经过空间指导模块后的Y,也是通过通道变化,尺寸变化,激活函数得到通道权重
2. 然后将相关特征进行点乘,最后将特征进行残差相加

4. Breast Lesion Boundary Detection Module

在这里插入图片描述
1. 将模型中间每层的结果输出,通过与最大池化结果做差得到边界图象,将边界和输出结果相加得到分割图象,两者同时进行深度监督
2. 刚开始认为仅仅只有边界的监督,后来才发现还有分割结果的监督

实验

使用了BCE和Dice构架深度监督损失函数,略微复杂,详情可见论文;
使用两个超声乳腺数据集,一个BUSI,一个私有数据集;

1. 对比实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1. 表4可以发现,GG-Net相较于UNet在Dice上提升了9%,相较于次优提升了1.5%
2. 表5可以发现,GG-Net相较于UNet在Dice上提升了8.8%,相较于次优也提升了1.5%
3. 表5是不加Normal的分割结果(我们一般也会用这个数据集),表6是添加了Normal病例的分割结果,可以发现结果相差较大,文章中是通过介绍说GG-Net在两个数据集上都达到了最优值来进行说明的

2. 消融实验

2.1 Ablation Analysis of our GG-Net

在这里插入图片描述
1. 从Dice结果上看,在仅引入传统空间注意力和通道注意力,相较于Baseline都有着很大的提升,平均提升2.9%;
2. 在1的基础上加上Guidance的提升效果不明显,只是分别提升了0.5%和0.9%
3. 将所有的组件都增加上,效果提升是没有单个组件增加的大,这个也是我们经常会遇到的问题

2.2 Ablation Analysis of our BD-Module

在这里插入图片描述

在这里插入图片描述

1. 表2中显示,将BD引入网络效果提升不是太多
2. 表3中是将BD中对乳腺病变区域边界的监督去掉的结果,可以发现边界监督的加入在Dice上提升了0.5%左右
在这里插入图片描述可视化结果显示效果很好,特别是对边界的感知较为准确,将误分割的区域都剔除掉了

可借鉴参考

暂无,可能就是行文思路和代码可以学习借鉴一下

这篇关于GG-Net: 超声图像中乳腺病变分割的全局指导网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/178643

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依