EfficientML.ai Lec 3 - Pruning and Sparsity (Part I) MIT 6.5940, Fall 2023, Zoom 本文是EfficientML.ai Fall 2023课程作业1练习答案,在本次练习里将会对经典的分类神经网络进行剪枝处理,减少模型大小和延迟。The goals of this assignment are as fo
实时了解业内动态,论文是最好的桥梁,专栏精选论文重点解读热点论文,围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型重新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模型领域最新技术跟踪。若对于具身智能感兴趣的请移步具身智能专栏。技术宅麻烦死磕AI架构设计。 视觉转换器(ViT)架构已经广受欢迎,并广泛用于计算机视觉应用。然而,随着 Vi
题目链接:https://acm.hdu.edu.cn/showproblem.php?pid=6983 Problem Description Chenjb is struggling with data stucture now. He is trying to solve a problem using segment tree. Chenjb is a freshman in progr
Abstract 网络剪枝是降低神经网络计算成本的重要研究方向。传统的方法都是先训练一个大型、冗余的网络,然后决定哪些单元(如通道)没那么重要,可以被裁剪掉。这篇论文发现,我们不需要预训练一个过度参数化的网络,再对其进行剪枝。作者证明,从随机初始化的权重直接进行剪枝,可以获得更多样化的剪枝结构,甚至性能更优的模型。因而,作者提出了一个新的剪枝方法,允许我们从零开始剪枝 (prune from s