论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning

本文主要是介绍论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning

  • 1 背景
  • 2 创新点
  • 3 方法
  • 4 模块
    • 4.1 问题表述
    • 4.2 分析高稀疏度下的权重剪枝
    • 4.3 通过SVD进行低秩逼近
    • 4.4 保持秩的对抗优化
    • 4.5 渐进式剪枝框架
  • 5 效果
    • 5.1 和SOTA方法对比
    • 5.2 消融实验
    • 5.3 开销分析
  • 6 结论

论文:https://arxiv.org/pdf/2311.17493

代码:https://github.com/huawei-noah/Efficient-Computing/tree/master/Pruning/RPG

1 背景

虽然结构化剪枝可以带来较大的运行时加速收益,但其性能远低于非结构化剪枝。

在高度稀疏的情况下,作者观察到非结构化剪枝会退化成结构化剪枝。当权重具有较大比例的零时,极有可能出现一个结构化的模式,其中整个通道或滤波器几乎被完全剪枝。因此,现有的权重剪枝方法在高稀疏度下会遇到性能急剧下降的情况。

作者通过比较两种剪枝方法受到启发,提出在权重剪枝中减少结构模式。结构化剪枝实际上是深度卷积网络中权重秩的降低,因此可以采用秩作为平衡非结构化稀疏权重“结构化”程度的指标:如果一个系数权重的秩较低,则认为它是高度结构化的。为了避免非结构化剪枝过于结构化,希望在剪枝时保持高稀疏度下的权重秩。

2 创新点

基于秩改进的目标,作者提出了一种基于对抗秩的剪枝方法(Rank-based PruninG, RPG)。

3 方法

在这里插入图片描述

首先,通过最小化近似误差来找到权重的低秩近似。通过奇异值分解找到最佳低秩逼近。其次,为了提高权重秩,最大化权重与其低秩对应的权重之间的距离来提高权重秩。这种基于对抗秩的优化目标将稀疏权重引导到一个高秩拓扑上。所提出的方法以逐步修剪的方式进行,以稳定训练过程中的秩变化。通过在图像分类和下游任务上的大量实验评估了所提出的RPG方法的优势,图1表明,与基线相比,本文方法获得了矩阵秩优势。
在这里插入图片描述

4 模块

4.1 问题表述

在传统的有监督神经网络学习方面,给定一个目标损失函数 L L L ,神经网络权重 W W W 和 输入输出对 X = { x i } i = 1 , … n , Y = { y i } i = 1 , … n X=\{x_i\}_{i=1,…n},Y=\{y_i\}_{i=1,…n} X={xi}i=1,n,Y={yi}i=1,n,神经网络权重 W W W 训练过程可表述为:
在这里插入图片描述

权重剪枝限制了权重 W W W 中非零权重的总数,或者在数学意义上,权重剪枝对神经网络施加 l 0 l_0 l0 范数约束。给定稀疏度预算,约束描述为:
在这里插入图片描述

一种常见的做法就是用权重张量 W W W 和二值化掩膜 M M M 计算点积重参化权重 W W W。二值化掩码 M M M 具有与 W W W 相同的形状,M中的每个元素代表其在 W W W 中的对应参数是否被剪枝。在重参化后,权重剪枝问题被形式化为:
在这里插入图片描述

在非结构化剪枝的高稀疏度下,稀疏网络的秩可能会大幅降低。

4.2 分析高稀疏度下的权重剪枝

非结构化剪枝和结构化剪枝是两种主要的剪枝方法。在非结构化剪枝实践中,CNN的权重张量以细粒度的方式被剪枝:每个孤立的权重参数可以在网络内部关闭(即设为零),但整个权重张量结构保持不变。相比之下,结构化剪枝侧重于过滤器的剪枝:过滤器作为剪枝过程中最小的可剪枝单元被截断。通过比较相同稀疏度预算下的两种剪枝范式,说明在相同的剪枝预算下,非结构化剪枝比结构化剪枝的效果要好得多。

这一现象可以从矩阵秩的角度进行解释。实际上,结构化剪枝是对权重矩阵的直接降秩,即过滤器剪枝本质上是低秩的权重剪枝。矩阵的秩表示矩阵所包含信息量的上界。一个强大的网络应该具有丰富的信息,作者希望稀疏网络的特征具有较高的秩。特征的秩与稀疏权重矩阵的秩密切相关,因为式(2.4)描述了矩阵乘法中秩的关系:
在这里插入图片描述从式中可以看出,当直接影响权重 W W W 的秩进行过滤器剪枝时,输出特征的秩也会降低,从而导致信息丰富度急剧损失。另一方面,非结构化剪枝摆脱了过滤器剪枝的结构约束,从而保留了更多的信息量。

当稀疏度较高时,非结构化剪枝部分退化为结构化剪枝。当权重被大比例的填充零时,形成“准结构化”的稀疏权重模式。图1中矩阵秩的基线评估说明了这一问题。因此,现有的权重剪枝方法在高稀疏度下通常会遇到性能急剧下降的情况。受两类剪枝性质的启发,作者提出在非结构化剪枝中减少结构化模式,从而在高稀疏度下保持权重排序。

4.3 通过SVD进行低秩逼近

既然权重的秩在权重剪枝中很重要,那么就需要一种方法来计算深度神经网络中的秩。由于权重值总是离散的,作为备选解,作者收敛到一个近似的秩,而不是计算一个精确的秩。因此,定义近似秩如下:

定义1(矩阵的 δ \delta δ 秩) : 给定一个矩阵 W W W 和一个小的误差容忍度 δ > 0 \delta>0 δ>0 W W W δ \delta δ 秩定义为最小的正整数 k k k,使得存在一个 k k k 秩矩阵,它到 W W W l 2 l_2 l2 距离小于 δ \delta δ

在之前的工作中,秩是通过奇异值分解计算奇异值来评估的。作者利用SVD计算定义1中的 δ \delta δ 秩。首先,说明SVD可以产生最佳的低秩近似:

定理1(最佳低秩近似):假设 W W W 通过SVD分解,并令 W = ∑ i = 1 r σ i u i v i T W=\sum_{i=1}^r\sigma_iu_iv_i^T W=i=1rσiuiviT,其中奇异值 { σ i } \{\sigma_i\} {σi} 按降序排序。给定整数 k < r k<r k<r W W W 的最佳 k k k 秩逼近,即与 W W W 有最小 l 2 l_2 l2 距离的 k k k 秩矩阵为:
在这里插入图片描述

由于SVD可以得到更好的低秩逼近,可以利用这个性质来求解定义1中的 δ \delta δ 秩。给定权重矩阵 W W W,寻找最小的 k k k 使得最佳 k k k 秩逼近 W ~ \widetilde{W} W l 2 l_2 l2 逼近误差小于误差容忍度 δ \delta δ。附录有给出证明。
在这里插入图片描述

4.4 保持秩的对抗优化

与低秩逼近不同,高秩矩阵是低秩矩阵难以逼近的。只要 W W W 保持它与最佳低秩逼近的距离,就可以增加它的秩。因此作者设计了一种对抗机制,增加 W W W 被低秩矩阵逼近的难度,从而在剪枝时提高 W W W 的矩阵秩。首先,通过奇异值分解生成低秩 k k k 的最佳低秩近似矩阵 W ~ \widetilde{W} W ,以最小化 W ~ \widetilde{W} W W W W 的距离。然后,对 W W W 进行优化,增加 W W W W ~ \widetilde{W} W 的距离。这个过程可以理解为 W W W W ~ \widetilde{W} W 之间的对抗,当低秩的 W ~ \widetilde{W} W 试图拟合 W W W 时, W W W 被优化以保持自身原理 W ~ \widetilde{W} W 。从数学上讲,这个对抗可以被表述为一个 min-max 问题。

但不幸的是,这个问题可能面临着无法收敛的风险。因为当 W ~ \widetilde{W} W 固定时, W → ∞ W→∞ W最佳。为了在优化过程中解决这个问题,作者将 W W W 限制在一个欧式范数球内。换句话说,作者将 W ∣ ∣ W ∣ ∣ F \frac{W}{||W||_F} ∣∣WFW 代替 W W W 代入问题。这里使用 l 2 l_2 l2 标准化的原因是:1. W W W 是有界的,而不是增长达无穷大的;2.在优化 min-max 问题时,如果对 W W W 进行 l 2 l_2 l2 归一化, W W W 的秩可以增加(定理2中有证明)。3.对权重进行 l 2 l_2 l2 归一化等价于对其奇异值进行 l 2 l_2 l2 归一化,在给定固定误差容忍度的情况下,根据定义1中秩的定义,为秩提供了比较公平的准则。

在介绍这个 min-max 问题之前,引入几个符号: ∣ ∣ ⋅ ∣ ∣ F ||·||_F ∣∣F 是矩阵的2范数。 I I I 是恒等矩阵, W ‾ : = W ∣ ∣ W ∣ ∣ \overline{W} := \frac{W}{||W||} W:=∣∣W∣∣W l 2 l_2 l2 标准化权重矩阵 W W W U , Σ , V U, \Sigma, V U,Σ,V 为 SVD 分解 W W W 得到的矩阵,其中 U = { u 1 , u 2 , … } U=\{u_1,u_2,…\} U={u1,u2,} V = { v 1 , v 2 , … } V=\{v_1,v_2,…\} V={v1,v2,} 为正交基, Σ \Sigma Σ 为对角矩阵,其中奇异值 { σ 1 , σ 2 , … } \{\sigma_1,\sigma_2,…\} {σ1,σ2,} 在对角线上按降序排列。算子 T r u n ( U Σ V T ) = ∑ i = 1 k σ i u i v i T Trun(U\Sigma V^T)=\sum_{i=1}^k\sigma_iu_iv_i^T Trun(UΣVT)=i=1kσiuiviT 表示 k k k 阶截断SVD,或 W W W k k k 阶最佳逼近。min-max问题形式化的表示如下:
在这里插入图片描述
优化目标被定义为对抗秩损失:
在这里插入图片描述

在这个情况下,作者提出如下定理,即对抗秩损失可以引导权重 W W W 向更高阶的方向移动:

定理2(对抗秩损失的有效性): 给定方程( 2.6 )中定义的对抗秩损失,如果通过梯度下降来优化秩损失中的W,那么W的秩将会增加。(附录有给出证明)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

利用提出对抗秩损失,优化目标包括两个方面:1. 针对某个任务(如分类,检测等)减少损失,已提高稀疏网络的性能;2.通过减少秩损失来获得更高的权重秩。给定复合超参 λ \lambda λ, Rank-based PruninG(RPG)的优化目标 L L L 可以定义为:
在这里插入图片描述

4.5 渐进式剪枝框架

之前的工作已经提出了各种剪枝框架,作者认为渐进式剪枝(Gradual Pruning,GP)可以再适中的训练预算下达到更好的性能,所以将其作为剪枝框架。GP在每次训练过程中修剪掉一小部分权重,试图通过迭代的“剪枝和训练”过程来保持稀疏的网络性能。

本文的PRG方法过程如下:没经过 Δ T \Delta T ΔT 就执行更新二进制掩码M的剪枝-生成过程,使得经过掩码更新后,整个网络在当前迭代时达到目标稀疏度。随着训练的进行,目标稀疏度会逐渐增加,这与GP相同。其次,对所有参数进行基于重要性的全局排序(代码里使用L1范数),并执行剪枝。最后,基于梯度进行参数生成。对于其他训练步骤(指出了剪枝阶段的finetune阶段),掩码M保持不变,对活跃的权重值进行更新。具体见算法1。
在这里插入图片描述

关于基于梯度进行参数生长代码如下:

score_grow = self.backward_hook_objects[l].dense_grad
score_grow = torch.abs(score_grow)
score_grow = score_grow.view(-1)
# mask1是二值化掩膜,形状和M一样,权重的L1范数前α比例的位置为1,其他位置为0
score_grow_lifted = torch.where(mask1 == 1,   torch.ones_like(mask1) * (torch.min(score_grow) - 1),score_grow)
# mask2是二值化掩膜,形状和M一样,score_grow_lifted前α比例的位置为1,其他位置为0
mask_combined = torch.reshape(mask1 + mask2, current_mask.shape).bool()

5 效果

5.1 和SOTA方法对比

在InageNet上,不同稀疏度剪枝下的效果如表2。
在这里插入图片描述

在ImageNet上的计算量和准确率如图3。
在这里插入图片描述

Deep Sparse是最近提出的一种CPU上的稀疏加速框架。将ResNet50在Deep Sparse上进行时间稀疏。在CPU上的准确率和耗时如表3。
在这里插入图片描述

对MaskRCN进行剪枝后在COCO val2017数据集上的效果如表4。
在这里插入图片描述

对基于transformer的模型,本文的方法虽然没有专门为注意力机制设计,但在DeiT-S上也取得了很好地效果,如表5。

在这里插入图片描述

5.2 消融实验

关于超参 λ \lambda λ 的消融实验,如图4。

在这里插入图片描述

5.3 开销分析

RPG涉及昂贵的SVD计算。然而,作者进行了实验,并说明在时间和FLOP方面,SVD在剪枝过程中所占的成本开销非常小。如表6所示,SVD计算的总体时间和FLOPs仅占整个RPG剪枝成本的< 2 %。作者还比较了RPG与其他剪枝方法的FLOPs开销。从表7可以观察到,与基线相比,本文方法是最具有成本效益的。最重要的是,秩损失计算带来的额外开销并不是一个值得关注的问题。

在这里插入图片描述
在这里插入图片描述

6 结论

非结构化剪枝对GPU设备的加速效果非常有限。

这篇关于论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063767

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓