论文笔记:A Simple and Effective Pruning Approach for Large Language Models

本文主要是介绍论文笔记:A Simple and Effective Pruning Approach for Large Language Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

iclr 2024 reviewer 评分 5668

1 intro

  • 大模型网络剪枝的paper
    • 在努力保持性能的同时,舍弃网络权重的一个子集
  • 现有方法
    • 要么需要重新训练
      • 这对于十亿级别的LLMs来说往往不现实
    • 要么需要解决依赖于二阶信息的权重重建问题
      • 这同样可能带来高昂的计算成本
  • ——>引入了一种新颖、简单且有效的剪枝方法,名为Wanda (Pruning by Weights and activations)
    • 在每个输出的基础上,剪枝那些乘以相应输入激活后幅度最小的权重
    • 无需重新训练或权重更新,剪枝后的LLM可以即刻使用

2 方法

2.1 motivation

  • 考虑一个带有两个输入及其对应权重的神经元:y = w1x1 + w2x2,其中|w1| ≤ |w2|。
    • 现在假设目标是选择一个权重进行移除,同时使输出变化最小。
    • 标准的幅度剪枝方法总是会移除权重w1
      • 如果输入特征x1和x2的幅度相似,这可能是一个好策略。
      • 然而,最近在LLMs中观察到,两个输入特征的规模可能差异很大。例如,可能|x1| ≫ |x2|,结果是|w1x1| ≫ |w2x2|。
      • 在这种情况下,我们应该移除权重w2,因为这种移除明显对神经元输出y的影响小于移除权重w1。

  • 这个动机示例与最简单的线性层一起暗示了幅度剪枝的一个主要限制
    • 它没有考虑输入激活,输入激活在决定神经元输出时可能与权重幅度同样重要。
    • 对于剪枝LLMs,这一点尤其关键,考虑到在其中发现的突出大幅度特征
    • ——>提出了一种专门为LLMs设计的剪枝指标,以处理此类限制,同时也保持了幅度剪枝的简单性

2.2 剪枝指标

2.3 和现有方法的对比

3 实验

3.1 效果比较

3.2 速度比较

3.3 finetune 剪枝后的LLM可以接近不剪枝的LLM

3.4 校准数据(X)的影响

这篇关于论文笔记:A Simple and Effective Pruning Approach for Large Language Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902746

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓