前面分析了DDPM和DDIM,但是仍然感觉对其理解不是和透彻,最近又学习了下,简单记录一下进一步的理解。为了方便理解,这里直接以两个像素的灰度图像为例。前面讲过无论是DDPM还是DDIM,他们的训练过程都是一样的,都遵循下面的这个公式: x t = α t ˉ x 0 + 1 − α t ˉ ϵ x_t = \sqrt{\bar{\alpha_t}}x_0+\sqrt{1-\bar{\alp
DENOISING DIFFUSION IMPLICIT MODELS(DDIM 去噪扩散隐式模型公式推导) DDIM思想,去掉DDPM去噪过程的马尔可夫性质,达到跳步去噪的目的。DDIM思想实现方法:假设一个不服从马尔可夫的逆向去噪转移分布 P ( x t ∣ x t − 1 , x 0 ) ∼ N ( k x 0 + m x t , σ 2 I ) P(x_t \mid x_{t-1},x_
DDPM的重大缺陷在于其在反向扩散的过程中需要逐步从 x t x_t xt倒推到 x 0 x_0 x0,因此其推理速度非常缓慢。相反,DDPM的训练过程是很快的,可以直接根据 x 0 x_0 x0到 x t x_t xt添加的高斯噪声 ϵ \epsilon ϵ完成一次训练。 为了解决这个问题,就有了DDIM,且包括Stable Diffusion在内的现今广泛使用的Diffusion模型
DDIM详解 参考:https://www.bilibili.com/video/BV1VP411u71p/ 虽然 DDIM 现在主要用于加速采样,但他的实际意义远不止于此。本文将首先回顾 DDPM 的训练和采样过程,再讨论 DDPM 与 DDIM 的关系,然后推导 DDIM 的采样公式,最后给出几个不同的理解 DDIM 的角度。 DDPM回顾 DDPM 实际是建模两个分布:diff
Make-A-Storyboard: A General Framework for Storyboard with Disentangled and Merged Control 公众:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 方法 1.1 上下文提示处理 1.2 解耦概念控制 1.3 对扩散中特征合并的观察