DDIM,多样性与运行效率之间的trade off

2024-04-07 20:44

本文主要是介绍DDIM,多样性与运行效率之间的trade off,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DDPM的重大缺陷在于其在反向扩散的过程中需要逐步从 x t x_t xt倒推到 x 0 x_0 x0,因此其推理速度非常缓慢。相反,DDPM的训练过程是很快的,可以直接根据 x 0 x_0 x0 x t x_t xt添加的高斯噪声 ϵ \epsilon ϵ完成一次训练。

为了解决这个问题,就有了DDIM,且包括Stable Diffusion在内的现今广泛使用的Diffusion模型都在使用DDIM。

在DDPM中,我们利用 P ( x t − 1 ∣ x t ) P(x_{t-1}|x_{t}) P(xt1xt)来逐步倒推至最开始的 x 0 x_0 x0,这一过程是遵守马尔可夫过程的,即每个时刻的状态只跟上一个时刻的状态有关,因此只能一步步的倒退回去。而实际上,我们最初就是简化了加噪过程,从 x 0 x_0 x0 x t x_t xt直接一步到位,并没有使用 P ( x t ∣ x t − 1 ) P(x_t|x_{t-1}) P(xtxt1)这样按部就班的马尔可夫过程。那么,能不能在倒推的时候也采用类似的思路进行“跳步”,从而达到加快推理的目的呢?

假设我们现在想直接从 k k k时刻跳到 s s s时刻,且有 s < k − 1 s<k-1 s<k1,那么仿照DDPM我们可以写出下列式子
P ( x s ∣ x k , x 0 ) = P ( x k ∣ x s , x 0 ) P ( x s ∣ x 0 ) P ( x k ∣ x 0 ) P(x_s|x_k,x_0)=\frac{P(x_k|x_s,x_0)P(x_s|x_0)}{P(x_k|x_0)} P(xsxk,x0)=P(xkx0)P(xkxs,x0)P(xsx0)
其中 P ( x s ∣ x 0 ) P(x_s|x_0) P(xsx0) P ( x k ∣ x 0 ) P(x_k|x_0) P(xkx0)满足的分布都好说,可以从正向扩散公式中得出。不知道怎么表示的这一项 P ( x k ∣ x s , x 0 ) P(x_k|x_s,x_0) P(xkxs,x0)因为反正整个模型都没有用过,所以可以先不考虑。(这个解释确实很神奇,但是他有用啊)其实就是说DDIM打破了马尔可夫链从 0 0 0开始逐个往前扩散的模型,而是直接采用从 x 0 x_0 x0 x t x_t xt的直接公式作为整个模型的backbone,因此从 s s s k k k的正向过程可以“按需定义”,而不必采用DDPM里的公式,所以在这里就直接被忽略了。

言归正传,我们尝试求解一下上面的式子。参考DDPM,我们也可以假设 P ( x s ∣ x k , x 0 ) P(x_s|x_k,x_0) P(xsxk,x0)是满足正态分布的,其均值为 x k x_k xk x 0 x_0 x0的加权和,记为
P ( x s ∣ x k , x 0 ) ∼ N ( n x 0 + m x k , σ 2 ) P(x_s|x_k,x_0)\sim\mathcal{N}(nx_0+mx_k, \sigma^2) P(xsxk,x0)N(nx0+mxk,σ2)写出 x s x_s xs的表达式
x s = ( n x 0 + m x k ) + σ ϵ , ϵ ∈ N ( 0 , 1 ) x_s=(nx_0+mx_k)+\sigma\epsilon,\epsilon\in\mathcal{N}(0,1) xs=(nx0+mxk)+σϵ,ϵN(0,1) x k = α ‾ k x 0 + 1 − a ‾ k ϵ ′ x_k=\sqrt{\overline{\alpha}_k}x_0+\sqrt{1-\overline{a}_k}\epsilon' xk=αk x0+1ak ϵ代入,可得
x s = ( n x 0 + m x k ) + σ ϵ = ( n + m a ‾ k ) x 0 + ( m 1 − a ‾ k ϵ ′ + σ ϵ ) = ( n + m a ‾ k ) x 0 + m 2 ( 1 − a ‾ k ) + σ 2 ϵ ′ ′ \begin{aligned} x_s&=(nx_0+mx_k)+\sigma\epsilon\\ &=(n+m\sqrt{\overline{a}_k})x_0+(m\sqrt{1-\overline{a}_k}\epsilon'+\sigma\epsilon)\\ &=(n+m\sqrt{\overline{a}_k})x_0+\sqrt{m^2(1-\overline{a}_k)+\sigma^2}\epsilon'' \end{aligned} xs=(nx0+mxk)+σϵ=(n+mak )x0+(m1ak ϵ+σϵ)=(n+mak )x0+m2(1ak)+σ2 ϵ′′注意到这个的形式与从 x 0 x_0 x0直接到 x s x_s xs的公式很像,即 x s = α ‾ s x 0 + 1 − a ‾ s ϵ x_s=\sqrt{\overline{\alpha}_s}x_0+\sqrt{1-\overline{a}_s}\epsilon xs=αs x0+1as ϵ,所以我们可以将这两个系数对应起来求解,得
m = 1 − α ‾ s − σ 2 1 − α ‾ k , n = α ‾ s − 1 − α ‾ s − σ 2 1 − α ‾ k α ‾ k m=\frac{\sqrt{1-\overline{\alpha}_s-\sigma^2}}{\sqrt{1-\overline{\alpha}_k}},n=\sqrt{\overline{\alpha}_s}-\frac{\sqrt{1-\overline{\alpha}_s-\sigma^2}}{\sqrt{1-\overline{\alpha}_k}}\sqrt{\overline{\alpha}_k} m=1αk 1αsσ2 ,n=αs 1αk 1αsσ2 αk 将上面的结果带入 x s x_s xs的均值 n x 0 + m x k nx_0+mx_k nx0+mxk,可得
μ = α ‾ s x 0 + 1 − α ‾ s − σ 2 1 − α ‾ k ( x k − α ‾ k x 0 ) \begin{aligned} \mu=\sqrt{\overline{\alpha}_s}x_0+\frac{\sqrt{1-\overline{\alpha}_s-\sigma^2}}{\sqrt{1-\overline{\alpha}_k}}(x_k-\sqrt{\overline{\alpha}_k}x_0) \end{aligned} μ=αs x0+1αk 1αsσ2 (xkαk x0)这样我们就求得了 P ( x s ∣ x k , x 0 ) P(x_s|x_k,x_0) P(xsxk,x0)满足的正态分布 N ( μ , σ 2 ) \mathcal{N}(\mu,\sigma^2) N(μ,σ2),其中只剩 σ \sigma σ为变量, x 0 x_0 x0可以像DDPM一样反解为 x k x_k xk的表达式代入,通过预测加噪的噪声来得到一个确定的 μ \mu μ

至于方差 σ \sigma σ,一般有两种取值,取 0 0 0时方差为 0 0 0,这个反向扩散就成了一个确定过程,对应标题中所说的“多样性换运行效率”,此时 σ = 0 \sigma=0 σ=0的状态就是我们通常所说的DDIM。而 σ = 1 − a t 1 − a ‾ t − 1 1 − a ‾ t \sigma=\frac{\sqrt{1-a_t}\sqrt{1-\overline{a}_{t-1}}}{\sqrt{1-\overline{a}_t}} σ=1at 1at 1at1 ,即在DDPM中推出来的方差时,整个过程会退化为DDPM的倒推过程。

需要注意的是,这里的 σ \sigma σ可以自由取值是因为我们假设 P ( x s ∣ x k , x 0 ) P(x_s|x_k,x_0) P(xsxk,x0)是一个均值 μ \mu μ未知,方差为 σ 2 \sigma^2 σ2的高斯分布,通过求解 μ \mu μ得到了一个只有 σ \sigma σ为自由变量的 x s x_s xs的表达式。可以把 σ \sigma σ视作一个超参数,只是通过实验发现在 σ = 0 \sigma=0 σ=0时效果最好。而DDPM中的方差是通过三个已知的正态分布计算来的,本身就是靠计算得来的确定的方差,所以不能随便更改,如果在DDPM的过程中使 σ = 0 \sigma=0 σ=0,效果会非常差。

而从实验结果来看, σ = 0 \sigma=0 σ=0的时候还是效果最好的,FID最低。在 S S S 50 50 50 100 100 100,即加速 10 − 20 10-20 1020倍时保持相近的生成质量。
在这里插入图片描述
更妙的是,因为DDPM中的U-Net预测的是加在 x t x_t xt上的噪声 ϵ \epsilon ϵ,这个是基于正向扩散的公式来的。而DDIM并没有改变这一过程,因此一个训练好的DDPM中的U-Net也可以直接拿到DDIM里面,甚至不需要额外训练。DDIM只是更改了DDPM反向扩散的过程,通过跳步加速推理。

这篇关于DDIM,多样性与运行效率之间的trade off的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883625

相关文章

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

如何在运行时修改serialVersionUID

优质博文:IT-BLOG-CN 问题 我正在使用第三方库连接到外部系统,一切运行正常,但突然出现序列化错误 java.io.InvalidClassException: com.essbase.api.base.EssException; local class incompatible: stream classdesc serialVersionUID = 90314637791991

linux中使用rust语言在不同进程之间通信

第一种:使用mmap映射相同文件 fn main() {let pid = std::process::id();println!(

O(n)时间内对[0..n^-1]之间的n个数排序

题目 如何在O(n)时间内,对0到n^2-1之间的n个整数进行排序 思路 把整数转换为n进制再排序,每个数有两位,每位的取值范围是[0..n-1],再进行基数排序 代码 #include <iostream>#include <cmath>using namespace std;int n, radix, length_A, digit = 2;void Print(int *A,

win7+ii7+tomcat7运行javaWeb开发的程序

转载请注明出处:陈科肇 1.前提准备: 操作系统:windows 7 旗舰版   x64 JDK:jdk1.7.0_79_x64(安装目录:D:\JAVA\jdk1.7.0_79_x64) tomcat:32-bit64-bit Windows Service Installer(安装目录:D:\0tomcat7SerV) tomcat-connectors:tomcat-connect

php 7之PhpStorm + Nginx + Xdebug运行调试

操作环境: windows PHP 7.1.10 PhpStorm-2017.2.4 Xdebug 2.5.4 Xdebug helper 1.6.1 nginx-1.12.2 注意查看端口占用情况 netstat -ano //查看所以端口netstat -aon|findstr "80" //查看指定端口占用情况 比如80端口查询情况 TCP 0.0.0.0:8

16 子组件和父组件之间传值

划重点 子组件 / 父组件 定义组件中:props 的使用组件中:data 的使用(有 return 返回值) ; 区别:Vue中的data (没有返回值);组件方法中 emit 的使用:emit:英文原意是:触发、发射 的意思components :直接在Vue的方法中声明和绑定要使用的组件 小炒肉:温馨可口 <!DOCTYPE html><html lang="en"><head><