优于InstantID!中山大学提出ConsistentID:可以仅使用单个图像根据文本提示生成不同的个性化ID图像

本文主要是介绍优于InstantID!中山大学提出ConsistentID:可以仅使用单个图像根据文本提示生成不同的个性化ID图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给定一些输入ID的图像,ConsistentID可以仅使用单个图像根据文本提示生成不同的个性化ID图像。效果看起来也是非常不错。

相关链接

Code:https://github.com/JackAILab/ConsistentID

Paper:https://ssugarwh.github.io/consistentid.github.io/arXiv.pdf

Demo:https://huggingface.co/spaces/JackAILab/ConsistentID/

论文阅读

ConsistentID:具有多模式细粒度身份保护的肖像生成

摘要

基于扩散的技术已经取得了重大进展,特别是在个性化和定制的设施生成方面。然而,现有方法在实现高保真和详细身份(ID)一致性方面面临挑战,这主要是由于对面部区域的细粒度控制不足,以及缺乏通过充分考虑错综复杂的面部细节和整体面部来保存ID的全面策略。

为了解决这些限制,我们引入了ConsistentID,这是一种创新的方法,专门用于在细粒度多模式面部提示下生成不同身份的人像,仅使用单个参考图像。ConsistentID由两个关键组件组成:一个多模式面部提示生成器,它将面部特征、相应的面部描述和整体面部上下文结合起来,以提高面部细节的准确性;一个通过面部注意力定位策略优化的ID保留网络,旨在保留面部区域的ID一致性。这些组件通过引入面部区域的细粒度多模态ID信息,显著提高了ID保存的准确性。

为了促进ConsistentID的训练,我们提供了一个细粒度的人像数据集FGID,其中包含超过500,000张面部图像,提供了比现有公共面部数据集更大的多样性和全面性。%如里昂脸、CelebA、FFHQ和SFHQ。实验结果证实,我们的ConsistentID在个性化面部生成方面实现了卓越的精度和多样性,超过了MyStyle数据集上的现有方法。此外,虽然ConsistentID引入了更多的多模态ID信息,但它在生成过程中保持了较快的推理速度。

方法

该框架包括两个关键模块:多模式面部身份生成器和有目的地制作的身份保留网络。

  • 多模态面部提示生成器由两个基本组件组成:一个细粒度的多模态特征提取器,专注于捕获详细的面部信息;一个面部ID特征提取器,专门用于学习面部ID特征。

  • 另一方面,身份保留网络利用面部文本和视觉提示,通过面部注意力定位策略防止来自不同面部区域的身份信息混合。这种方法确保了面部区域中ID一致性的保持。

实验

ConsistentID改变角色年龄属性的应用案例。

我们的模型与其他模型在两个特殊任务上的定性比较:风格化和动作指导。

与更多基于微调的模型的比较。

重新语境化环境中的可视化。这些例子展示了ConsistentID的高身份保真度和文本编辑能力。

消融实验

不同合并步骤下的可视化结果。合并步骤指示何时开始向文本提示添加面部图像特征。

结论

在这项工作中,我们介绍了ConsistentID,这是一种创新的方法,旨在保持身份一致性并捕捉不同的面部细节。我们已经开发两个新颖的模块:多模式面部提示生成器和身份保存网络。前者致力于通过在面部区域级别结合视觉和文本描述来生成多模式面部提醒。后者旨在通过面部注意力定位策略确保每个面部区域的ID一致性,防止ID信息混合不同的面部区域。

通过利用多模式细粒度提示,我们的方法仅使用单个面部图像就实现了显著的身份一致性和面部真实感。此外,我们还介绍了FGID数据集,这是一个全面的数据集,包含细粒度的身份信息和详细的面部描述,对训练ConsistentID模型至关重要。实验结果在个性化面部生成方面表现出卓越的准确性和多样性,超过了MyStyle数据集上的现有方法。

限制

在我们的方法中使用MLLM可能会引入一些限制,这些限制可能会影响模型性能的特定方面。约束条件有限的姿势和表情可能会限制我们方法的多样性, 影响其处理面部变化的能力。这些限制强调深入讨论和探索的必要性,特别是在解决与GPT-4V的姿态、表达和整合相关的挑战。

这篇关于优于InstantID!中山大学提出ConsistentID:可以仅使用单个图像根据文本提示生成不同的个性化ID图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999807

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi