YOLOv4重磅发布,五大改进,二十多项技巧实验,堪称最强目标检测万花筒

本文主要是介绍YOLOv4重磅发布,五大改进,二十多项技巧实验,堪称最强目标检测万花筒,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,关注我们

今年2月22日,知名的 DarkNet 和 YOLO 系列作者 Joseph Redmon 宣布退出 CV 界面,这也就意味着 YOLOv3 不会再有官方更新了。但是,CV 领域进步的浪潮仍在滚滚向前,仍然有人在继续优化 YOLOv3。今日,著名的AlexeyAB版本发布了 YOLOv4的论文。该论文提出了五大改进,二十多个技巧的实验,可以说 YOLOv4是一项非常sol id的工作。

论文题目:YOLOv4: Optimal Speed and Accuracy of Object Detection

论文链接:https://arxiv.org/pdf/2004.10934.pdf

开源代码:https://github.com/AlexeyAB/darknet

如果您访问 arxiv 和 github 较慢,可以在公众号 AIZOO 后台回复 yolov4或者yolo 获取打包下载的论文和代码。

首先,看一下作者论文上的效果图,可以说在平均精度(mAP)和速度上,远超 YOLOv3版本(文中提到 mAP 提升 10个点,速度提升12%)。

笔者仔细阅读了该论文,可以说 YOLOv4 是做了很多扎实的(solid)的工作。下面我们首先简单介绍一下该论文,然后详细介绍论文提到的五大改进二十多项最新目标检测技巧的实验。

1

如何看待YOLOv4

目前,工业界常用的目标检测算法,SSD 是 2015年发表的,RetinaNet、 Mask R-CNN、Cascade R-CNN 是 2017 年发表的,YOLOv3 是2018年发表的。时光荏苒,过去的五年,深度学习也在不断更新,从激活函数上,到数据增强,到网络结构,都有大量的创新。而YOLOv4这项工作, 可以说是既往开来。

如果用一个词来评论这篇论文,那就是“良心”。这篇文章试验对比了大量的近几年来最新的深度学习技巧,例如  Swish、Mish激活函数,CutOut和CutMix数据增强方法,DropPath和DropBlock正则化方法,也提出了自己的创新,例如 Mosaic (马赛克) 和 自对抗训练数据增强方法提出了修改版本的 SAM 和 PAN,跨Batch的批归一化(BN),共五大改进。所以说该文章工作非常扎实,也极具创新。

而且作者也在文中多次强调,这是一个平衡精度和速度的算法,大的模型,例如Mask-RCNN和Cascade R-CNN在比赛中可以霸榜,但速度太慢;小的模型速度快,但精度又不高。另外,当今的不少模型因为太大,需要很多GPU 进行并行训练,而 YOLOv4 可以在一块普通的GPU(1080Ti)上完成训练,同时能够达到实时性,从而能够在生产环境中部署。

2

YOLOv4作者的思考

作者总结的 YOLOv4 三大贡献:

  • 设计了强大而高效的检测模型,任何人都可以用 1080 Ti 和  2080 Ti训练这个超快而精准的模型。

  • 验证了很多近几年 SOTA 的深度学习目标检测训练技巧。

  • 修改了很多 SOTA 的方法, 让它们对单GPU训练更加高效,例如 CBN,PAN,SAM等。

作者总结了近几年的单阶段和双阶段的目标检测算法以及技巧,并 用一个图概括了单阶段和双阶段目标检测网络的差别,two stage的检测网络,相当于在one stage的密集检测上增加了一个稀疏的预测器,或者说one stage网络是 two stage的 RPN部分,是它的一个特例或子集。

作者将那些增加模型性能,只在训练阶段耗时增多,但不影响推理耗时的技巧称为 —— 赠品(bag of freebies),也就是白给的提高精度的方法。而那些微微提高了推理耗时,却显著提升性能的,叫做——特价(bag of specials),就是那些不免费,但很实惠的技巧。

bag of freebies

以数据增强方法为例,虽然增加了训练时间,但可以让模型泛化性能和鲁棒性更好。例如下面的常见增强方法:

    • 图像扰动,

    • 改变亮度、对比对、饱和度、色调

    • 加噪声

    • 随机缩放

    • 随机裁剪(random crop)

    • 翻转

    • 旋转

    • 随机擦除(random erase)

    • Cutout

    • MixUp

    • CutMix

    下图是作者在训练模型时用的图像增强方法:

    另外,还有常见的正则化方法:

    • DropOut

    • DropConnect

    • DropBlock

    平衡正负样本的方法:

    • Focal loss

    • OHEM(在线难分样本挖掘)

    此外,还有回归 loss的改进:

    • GIOU

    • DIOU

    • CIoU

    凡此种种,都是训练时候的改进技巧,不影响推理速度,都可以称为赠送品。

bag of specials

特价品是指稍微增加推理的耗时,但是显著提升性能的技巧。

例如增大感受野技巧:

    • SPP

    • ASPP

    • RFB

注意力机制:

    • Squeeze-and-Excitation (SE), 增加2%计算量(但推理时有10%的速度),可以提升1%的ImageNet top-1精度。

    • Spatial Attention Module (SAM),增加0.1%计算量,提升0.5%的top-1准确率。

特征融合集成:

    • FPN

    • SFAM

    • ASFF

    • BiFPN (也就是大名鼎鼎的EfficientDet)

    更好的激活函数:

    • ReLU

    • LReLU

    • PReLU

    • ReLU6

    • SELU

    • Swish

    • hard-Swish

    后处理非最大值抑制算法:

    • soft-NMS

    • DIoU NMS

3

YOLOv3模型设计

作者针对 GPU和 VPU 分别使用不同的组卷积策略,GPU 使用 1~8 组卷积, 对VPU则使用完全的组卷积。网络结构采用的CSPResNeX50和CSPDarknet53。

作者提到,CSPResNeX50分类精度比CSPDarknet,但是检测性能却不如后者。

为了让模型可以在单个GPU上训练的的更快,作者使用了以下几个技巧:

  • 独创的数据增强方法 Mosaic (马赛克) 和 自对抗训练(Self Adversarial Training, SAT)

  • 使用遗传算法选择最优超参数

  • 修改版本的 SAM,修改版本的PAN和跨批量归一化(Cross mini-Batch Normalization)

这个Mosaic,就是把四张图片拼接为一张图片,这等于变相的增大了一次训练的图片数量,可以让最小批数量进一步降低,让在单GPU上训练更为轻松。

这里的CmBN,是对CBN的改进,收集一个batch内多个mini-batch内的统计数据。BN, CBN, CmBN的区别如下图所示:

此外,作者还将 SAM的空间注意力改为逐点注意力,并将 PAN的快捷连接的相加改为拼接(concatenation)。

一个完整的YOLOv4 由以下三部分组成:CSPDarknet53 (backbone) + SPP+PAN (Neck,也就是特征增强模块)+ YoloV3组成。

另外,YOLOv4使用了“赠送”技巧有CutMix、Mosaic 数据增强, DropBlock正则化,标签平滑,CIoU-loss,CmBN,自对抗训练,每个目标分配给多个anchor,(这点和v3有差别,v3版本每个目标只有一个正样本)。

使用的“特价”技巧:Mish activation、跨阶段空间连接 (CSP),多输入权重残差连接,SPP-block、SAM-block,PAN,DIoU-NMS。

4

试验结果

作者做了大量的对比消融试验,在分类任务上,在CSPResNeXt50和CSPDarknet53上,使用不同配置的结果对比如下:


作者使用的多个技巧,在检测任务上的对比结果如下(这里需要读论文对照一下每个符号的含义):

最后,是在Maxwell、Pascal、Volta三个不同系列的GPU,在COCO 数据集上的结果对比:

总的来说,YOLOv4是在速度和精度上trade off做的非常好的一项工作。

5

总结

笔者本来想详尽的介绍一下本论文,但发现这篇paper信息量太大,难以在一篇博文描述完。可以看出作者是实打实的做了很多近几年的各种技巧的对比实验,也做了不少方法的创新改进。可以说这是一篇花了很多功夫和精力的论文。推荐大家读一下论文,文章写的真的非常通俗易懂,总结了大量的技巧,甚至可以做为目标检测面试宝典

您可以在公众号 AIZOO 后台回复 yolov4或者yolo 获取打包下载的论文和代码。

精彩推荐

2020年代,中国AI创业公司将走向何方

都2020年了,在校学生还值得继续转行搞AI吗

AIZOO开源人脸口罩检测数据+模型+代码+在线网页体验,通通都开源了

新手也能彻底搞懂的目标检测Anchor是什么?怎么科学设置?[附代码]

我是元峰,互联网+AI领域的创业者,欢迎扫描下方二维码,或者直接在微信搜索“AIZOO”关注我们的公众号AIZOO。您也可以访问我们的网站 AIZOO.com 了解我们。

如果您是有算法需求,例如目标检测、人脸识别、缺陷检测、行人检测的算法需求,欢迎添加我们的微信号AIZOOTech与我们交流,我们团队是一群算法工程师的创业团队,会以高效、稳定、高性价比的产品满足您的需求。

如果您是算法或者开发工程师,也可以添加我们的微信号AIXZOOTech,请备注学校or公司名称-研究方向-昵称,例如“浙大-图像算法-元峰”,元峰会拉您进我们的算法交流群,一起交流算法和开发的知识,以及对接项目。

添加小助手邀您进AIZOO技术交流群

扫描二维码

添加小助手

AIZOOTech

这篇关于YOLOv4重磅发布,五大改进,二十多项技巧实验,堪称最强目标检测万花筒的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999451

相关文章

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na