YOLOv4重磅发布,五大改进,二十多项技巧实验,堪称最强目标检测万花筒

本文主要是介绍YOLOv4重磅发布,五大改进,二十多项技巧实验,堪称最强目标检测万花筒,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,关注我们

今年2月22日,知名的 DarkNet 和 YOLO 系列作者 Joseph Redmon 宣布退出 CV 界面,这也就意味着 YOLOv3 不会再有官方更新了。但是,CV 领域进步的浪潮仍在滚滚向前,仍然有人在继续优化 YOLOv3。今日,著名的AlexeyAB版本发布了 YOLOv4的论文。该论文提出了五大改进,二十多个技巧的实验,可以说 YOLOv4是一项非常sol id的工作。

论文题目:YOLOv4: Optimal Speed and Accuracy of Object Detection

论文链接:https://arxiv.org/pdf/2004.10934.pdf

开源代码:https://github.com/AlexeyAB/darknet

如果您访问 arxiv 和 github 较慢,可以在公众号 AIZOO 后台回复 yolov4或者yolo 获取打包下载的论文和代码。

首先,看一下作者论文上的效果图,可以说在平均精度(mAP)和速度上,远超 YOLOv3版本(文中提到 mAP 提升 10个点,速度提升12%)。

笔者仔细阅读了该论文,可以说 YOLOv4 是做了很多扎实的(solid)的工作。下面我们首先简单介绍一下该论文,然后详细介绍论文提到的五大改进二十多项最新目标检测技巧的实验。

1

如何看待YOLOv4

目前,工业界常用的目标检测算法,SSD 是 2015年发表的,RetinaNet、 Mask R-CNN、Cascade R-CNN 是 2017 年发表的,YOLOv3 是2018年发表的。时光荏苒,过去的五年,深度学习也在不断更新,从激活函数上,到数据增强,到网络结构,都有大量的创新。而YOLOv4这项工作, 可以说是既往开来。

如果用一个词来评论这篇论文,那就是“良心”。这篇文章试验对比了大量的近几年来最新的深度学习技巧,例如  Swish、Mish激活函数,CutOut和CutMix数据增强方法,DropPath和DropBlock正则化方法,也提出了自己的创新,例如 Mosaic (马赛克) 和 自对抗训练数据增强方法提出了修改版本的 SAM 和 PAN,跨Batch的批归一化(BN),共五大改进。所以说该文章工作非常扎实,也极具创新。

而且作者也在文中多次强调,这是一个平衡精度和速度的算法,大的模型,例如Mask-RCNN和Cascade R-CNN在比赛中可以霸榜,但速度太慢;小的模型速度快,但精度又不高。另外,当今的不少模型因为太大,需要很多GPU 进行并行训练,而 YOLOv4 可以在一块普通的GPU(1080Ti)上完成训练,同时能够达到实时性,从而能够在生产环境中部署。

2

YOLOv4作者的思考

作者总结的 YOLOv4 三大贡献:

  • 设计了强大而高效的检测模型,任何人都可以用 1080 Ti 和  2080 Ti训练这个超快而精准的模型。

  • 验证了很多近几年 SOTA 的深度学习目标检测训练技巧。

  • 修改了很多 SOTA 的方法, 让它们对单GPU训练更加高效,例如 CBN,PAN,SAM等。

作者总结了近几年的单阶段和双阶段的目标检测算法以及技巧,并 用一个图概括了单阶段和双阶段目标检测网络的差别,two stage的检测网络,相当于在one stage的密集检测上增加了一个稀疏的预测器,或者说one stage网络是 two stage的 RPN部分,是它的一个特例或子集。

作者将那些增加模型性能,只在训练阶段耗时增多,但不影响推理耗时的技巧称为 —— 赠品(bag of freebies),也就是白给的提高精度的方法。而那些微微提高了推理耗时,却显著提升性能的,叫做——特价(bag of specials),就是那些不免费,但很实惠的技巧。

bag of freebies

以数据增强方法为例,虽然增加了训练时间,但可以让模型泛化性能和鲁棒性更好。例如下面的常见增强方法:

    • 图像扰动,

    • 改变亮度、对比对、饱和度、色调

    • 加噪声

    • 随机缩放

    • 随机裁剪(random crop)

    • 翻转

    • 旋转

    • 随机擦除(random erase)

    • Cutout

    • MixUp

    • CutMix

    下图是作者在训练模型时用的图像增强方法:

    另外,还有常见的正则化方法:

    • DropOut

    • DropConnect

    • DropBlock

    平衡正负样本的方法:

    • Focal loss

    • OHEM(在线难分样本挖掘)

    此外,还有回归 loss的改进:

    • GIOU

    • DIOU

    • CIoU

    凡此种种,都是训练时候的改进技巧,不影响推理速度,都可以称为赠送品。

bag of specials

特价品是指稍微增加推理的耗时,但是显著提升性能的技巧。

例如增大感受野技巧:

    • SPP

    • ASPP

    • RFB

注意力机制:

    • Squeeze-and-Excitation (SE), 增加2%计算量(但推理时有10%的速度),可以提升1%的ImageNet top-1精度。

    • Spatial Attention Module (SAM),增加0.1%计算量,提升0.5%的top-1准确率。

特征融合集成:

    • FPN

    • SFAM

    • ASFF

    • BiFPN (也就是大名鼎鼎的EfficientDet)

    更好的激活函数:

    • ReLU

    • LReLU

    • PReLU

    • ReLU6

    • SELU

    • Swish

    • hard-Swish

    后处理非最大值抑制算法:

    • soft-NMS

    • DIoU NMS

3

YOLOv3模型设计

作者针对 GPU和 VPU 分别使用不同的组卷积策略,GPU 使用 1~8 组卷积, 对VPU则使用完全的组卷积。网络结构采用的CSPResNeX50和CSPDarknet53。

作者提到,CSPResNeX50分类精度比CSPDarknet,但是检测性能却不如后者。

为了让模型可以在单个GPU上训练的的更快,作者使用了以下几个技巧:

  • 独创的数据增强方法 Mosaic (马赛克) 和 自对抗训练(Self Adversarial Training, SAT)

  • 使用遗传算法选择最优超参数

  • 修改版本的 SAM,修改版本的PAN和跨批量归一化(Cross mini-Batch Normalization)

这个Mosaic,就是把四张图片拼接为一张图片,这等于变相的增大了一次训练的图片数量,可以让最小批数量进一步降低,让在单GPU上训练更为轻松。

这里的CmBN,是对CBN的改进,收集一个batch内多个mini-batch内的统计数据。BN, CBN, CmBN的区别如下图所示:

此外,作者还将 SAM的空间注意力改为逐点注意力,并将 PAN的快捷连接的相加改为拼接(concatenation)。

一个完整的YOLOv4 由以下三部分组成:CSPDarknet53 (backbone) + SPP+PAN (Neck,也就是特征增强模块)+ YoloV3组成。

另外,YOLOv4使用了“赠送”技巧有CutMix、Mosaic 数据增强, DropBlock正则化,标签平滑,CIoU-loss,CmBN,自对抗训练,每个目标分配给多个anchor,(这点和v3有差别,v3版本每个目标只有一个正样本)。

使用的“特价”技巧:Mish activation、跨阶段空间连接 (CSP),多输入权重残差连接,SPP-block、SAM-block,PAN,DIoU-NMS。

4

试验结果

作者做了大量的对比消融试验,在分类任务上,在CSPResNeXt50和CSPDarknet53上,使用不同配置的结果对比如下:


作者使用的多个技巧,在检测任务上的对比结果如下(这里需要读论文对照一下每个符号的含义):

最后,是在Maxwell、Pascal、Volta三个不同系列的GPU,在COCO 数据集上的结果对比:

总的来说,YOLOv4是在速度和精度上trade off做的非常好的一项工作。

5

总结

笔者本来想详尽的介绍一下本论文,但发现这篇paper信息量太大,难以在一篇博文描述完。可以看出作者是实打实的做了很多近几年的各种技巧的对比实验,也做了不少方法的创新改进。可以说这是一篇花了很多功夫和精力的论文。推荐大家读一下论文,文章写的真的非常通俗易懂,总结了大量的技巧,甚至可以做为目标检测面试宝典

您可以在公众号 AIZOO 后台回复 yolov4或者yolo 获取打包下载的论文和代码。

精彩推荐

2020年代,中国AI创业公司将走向何方

都2020年了,在校学生还值得继续转行搞AI吗

AIZOO开源人脸口罩检测数据+模型+代码+在线网页体验,通通都开源了

新手也能彻底搞懂的目标检测Anchor是什么?怎么科学设置?[附代码]

我是元峰,互联网+AI领域的创业者,欢迎扫描下方二维码,或者直接在微信搜索“AIZOO”关注我们的公众号AIZOO。您也可以访问我们的网站 AIZOO.com 了解我们。

如果您是有算法需求,例如目标检测、人脸识别、缺陷检测、行人检测的算法需求,欢迎添加我们的微信号AIZOOTech与我们交流,我们团队是一群算法工程师的创业团队,会以高效、稳定、高性价比的产品满足您的需求。

如果您是算法或者开发工程师,也可以添加我们的微信号AIXZOOTech,请备注学校or公司名称-研究方向-昵称,例如“浙大-图像算法-元峰”,元峰会拉您进我们的算法交流群,一起交流算法和开发的知识,以及对接项目。

添加小助手邀您进AIZOO技术交流群

扫描二维码

添加小助手

AIZOOTech

这篇关于YOLOv4重磅发布,五大改进,二十多项技巧实验,堪称最强目标检测万花筒的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999451

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

如何在Mac上彻底删除Edge账户? 手动卸载Edge浏览器并清理残留文件技巧

《如何在Mac上彻底删除Edge账户?手动卸载Edge浏览器并清理残留文件技巧》Mac上的Edge账户里存了不少网站密码和个人信息,结果同事一不小心打开了,简直尴尬到爆炸,想要卸载edge浏览器并清... 如果你遇到 Microsoft Edge 浏览器运行迟缓、频繁崩溃或网页加载异常等问题,可以尝试多种方

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间