【代码随想录】【算法训练营】【第16天】 [104]二叉树的最大深度 [111]二叉树的最小深度 [222]完全二叉树的节点个数

本文主要是介绍【代码随想录】【算法训练营】【第16天】 [104]二叉树的最大深度 [111]二叉树的最小深度 [222]完全二叉树的节点个数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

思路及算法思维,指路 代码随想录。
题目来自 LeetCode。

day 16,周四,再坚持一下吧~

题目详情

[104] 二叉树的最大深度

题目描述

104 二叉树的最大深度
104 二叉树的最大深度

解题思路

前提:二叉树的最大深度,等价于二叉树的层数,等价于求最底层二叉树叶子结点的高度。
思路:求二叉树深度:前序遍历;求二叉树高度:后序遍历;求二叉树层数:层级遍历。
重点:二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始);二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)。

代码实现

C语言
层级遍历 队列
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/
int maxDepth(struct TreeNode* root) {int ans = 0;// 判断树非空if (root == NULL){return ans;}// 层级遍历, 队列struct TreeNode *queue[10000];int idx = 0;queue[idx++] = root;int start = 0;while (start < idx){int levelCnt = idx - start;for (int i = 0; i < levelCnt; i++){struct TreeNode *cur = queue[start++];if (cur->left){queue[idx++] = cur->left;}if (cur->right){queue[idx++] = cur->right;}}ans++;}return ans;
}
后序遍历 求root的高度,递归
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/int max(int a, int b)
{return (a > b) ? a : b;
}int hight(struct TreeNode* root)
{// 后序遍历求高度,最大深度即为root的高度if (root == NULL){return 0;}int leftHight = hight(root->left);int rightHight = hight(root->right);return 1 + max(leftHight, rightHight);
}int maxDepth(struct TreeNode* root) {// 后序遍历求高度,最大深度即为root的高度,递归return hight(root);
}
前序遍历 求root深度,递归
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/int max(int a, int b)
{return (a > b) ? a : b;
}void depthFun(struct TreeNode* root, int depth, int *result)
{// 前序遍历求深度, 注意回溯的过程if (root == NULL){return ;}*result = max(*result, depth);depthFun(root->left, depth + 1, result);depthFun(root->right, depth + 1, result);return ;
}int maxDepth(struct TreeNode* root) {// 后序遍历求高度,最大深度即为root的高度,递归int result = 0;int depth = 0;depthFun(root, depth + 1, &result);return result;
}

[111] 二叉树的最小深度

题目描述

111 二叉树的最小深度
111 二叉树的最小深度

解题思路

前提:二叉树的最小深度,等价于二叉树最高层叶子结点的层数,等价于求二叉树最高层叶子结点的高度。
思路:求二叉树深度:前序遍历;求二叉树高度:后序遍历;求二叉树层数:层级遍历。
重点:注意叶子结点的含义: (node->left == NULL) && (node->right == NULL)。

代码实现

C语言
层序遍历,队列
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/
int minDepth(struct TreeNode* root) {int ans = 0;// 判断空树if (root == NULL){return ans;}// 层序遍历,队列struct TreeNode *queue[100000];int idx = 0;queue[idx++] = root;int start = 0;while (start < idx){int levelCnt = idx - start;ans++;for (int i = 0; i < levelCnt; i++){struct TreeNode *cur = queue[start++];// 判断是否为叶子结点if ((cur->left == NULL) && (cur->right == NULL)){// 找到第一个叶子结点,直接退出return ans;}if (cur->left){queue[idx++] = cur->left;}if (cur->right){queue[idx++] = cur->right;}}}return ans;
}
前序遍历深度,递归
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/int minFun(int a, int b)
{return (a < b) ? a : b;
}void depthFun(struct TreeNode* root, int depth, int *result)
{if (NULL == root){return ;}// 寻找叶子结点if ((root->left == NULL) && (root->right == NULL)){*result = minFun(*result, depth);return ;}depthFun(root->left, depth + 1, result);depthFun(root->right, depth + 1, result);
}int minDepth(struct TreeNode* root) {// 判断空树if (root == NULL){return 0;}int ans = INT_MAX;// 前序遍历,递归depthFun(root, 1, &ans);return ans;
}

[222] 完全二叉树的节点个数

题目描述

222 完全二叉树的节点个数
222 完全二叉树的节点个数

解题思路

前提:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
思路:普通二叉树遍历;利用完全二叉树特性,拆解为n个满二叉树,利用 2^树深度 - 1 来计算。
重点:完全二叉树的特性。

代码实现

C语言
普通二叉树 先序遍历 递归
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/void travesal(struct TreeNode *root, int *ans)
{if (root == NULL){return ;}//先序遍历(*ans)++;travesal(root->left, ans);travesal(root->right, ans);
}int countNodes(struct TreeNode* root) {int ans = 0;travesal(root, &ans);return ans;
}
普通二叉树 结点数量 递归
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/int countNodeNum(struct TreeNode *root)
{if (root == NULL){return 0;}int leftNum = countNodeNum(root->left);int rightNum = countNodeNum(root->right);return (leftNum + rightNum + 1);
}int countNodes(struct TreeNode* root) {int ans = countNodeNum(root);return ans;
}
完全二叉树分解成满二叉树,利用满二叉树结点数为2^n -1。
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/int countNodeNum(struct TreeNode *root)
{if (root == NULL){return 0;}int leftDepth = 0;int rightDepth = 0;struct TreeNode *left = root->left;struct TreeNode *right = root->right;// 求左侧叶子结点的深度while (left){leftDepth++;left = left->left;}// 求右侧叶子结点的深度while (right){rightDepth++;right = right->right;}// 判断是否为满二叉树, 两边深度相同// 注意:两侧深度相同的二叉树不是满二叉树,但两侧深度相同的完全二叉树,一定是满二叉树。if (leftDepth == rightDepth){return (2 << leftDepth) - 1;}int leftNum = countNodeNum(root->left);int rightNum = countNodeNum(root->right);return (leftNum + rightNum + 1);
}int countNodes(struct TreeNode* root) {int ans = countNodeNum(root);return ans;
}

今日收获

  1. 二叉树的深度、高度;
  2. 完全二叉树的特性。

这篇关于【代码随想录】【算法训练营】【第16天】 [104]二叉树的最大深度 [111]二叉树的最小深度 [222]完全二叉树的节点个数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998168

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python