使用RAG和文本转语音功能,我构建了一个 QA 问答机器人

2024-05-23 23:36

本文主要是介绍使用RAG和文本转语音功能,我构建了一个 QA 问答机器人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:《大模型实战宝典》(2024版)正式发布!


我们已经进入了一个大规模使用大型语言模型(LLM)的年代。无论是简单的搜索引擎还是功能广泛的聊天机器人,LLM都在满足各类业务需求方面发挥了重要作用。

企业经常需要的一种工具是问答(QA)机器人。这是一种由AI驱动的工具,能够快速回答用户输入的问题。

在本文中,我们将开发一种结合RAG和文本转语音(TTS)功能的QA-LLM机器人。

我们该如何实现呢?让我们一探究竟。

项目结构

在这个项目中,我们将遵循以下结构。

项目将遵循以下步骤:

  1. 使用 Docker 部署开源的 Weaviate 向量数据库。
  2. 阅读《保险手册》PDF 文件,并使用 HuggingFace 公共托管的嵌入模型对数据进行嵌入。
  3. 将嵌入存储到 Weaviate 向量存储(知识库)中。
  4. 使用 HuggingFace 公共托管的嵌入模型和生成模型开发 RAG 系统。
  5. 使用 ElevenLabs 的文本转语音模型将 RAG 输出转换为音频。
  6. 使用 Streamlit 创建前端。

总体来说,我们将遵循这 6 个步骤来创建带有 RAG 和 TTS 的问答工具。

现在开始吧。

准备工作

在开始之前,我们需要准备一些包含所有需求的 Python 文件,以确保我们的应用程序能够正常运行。

首先,我们需要 HuggingFace API 访问令牌,因为我们将使用托管在那里的模型。如果你已经在 HuggingFace 注册,可以在令牌页面获取它们。

此外,我们将使用 ElevenLabs 的文本转语音模型。因此,请注册他们的免费帐户并获取 API 密钥。

拿到这两个 API 密钥后,你需要创建一个 .env 文件来存储这些密钥。将以下代码填入该文件:

ELEVENLABS_API_KEY= 'Your-ElevenLabs-API'
HUGGINGFACEHUB_API_TOKEN = 'Your-HuggingFace-API'

接下来,我们将通过安装所有必要的包来设置环境:

pip install langchain langchain-community langchain-core weaviate-client elevenlabs streamlit python-dotenv huggingface_hub sentence-transformers

准备工作完成后,让我们开始创建应用程序。

部署 Weaviate 向量数据库
对于本教程,你需要安装 Docker Desktop。如果还没有安装,可以在 Docker 网站上下载安装程序。

为了轻松部署 Weaviate 向量数据库,我们将遵循 Weaviate 的设置建议。在部署过程中,我们将使用 docker-compose 进行部署,你可以在下面的代码中看到:

version: '3.4'
services:weaviate:command:- --host- 0.0.0.0- --port- '8081'- --scheme- httpimage: cr.weaviate.io/semitechnologies/weaviate:1.24.10ports:- 8081:8081- 50051:50051volumes:- weaviate_data:/var/lib/weaviaterestart: on-failure:0environment:QUERY_DEFAULTS_LIMIT: 25AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'PERSISTENCE_DATA_PATH: '/var/lib/weaviate'DEFAULT_VECTORIZER_MODULE: 'none'ENABLE_MODULES: 'text2vec-cohere,text2vec-huggingface,text2vec-palm,text2vec-openai,generative-openai,generative-cohere,generative-palm,ref2vec-centroid,reranker-cohere,qna-openai'CLUSTER_HOSTNAME: 'node1'
volumes:weaviate_data:

在你选择的环境中,创建一个名为 docker-compose.yml 的文件,并复制上述代码。上述代码将从 Weaviate 拉取镜像,并包含所有相关模块。这段代码还将通过 PERSISTENCE_DATA_PATH 提供数据持久化。Weaviate 向量存储也会暴露在端口 8081。

一切准备就绪后,在终端中运行以下代码:

docker-compose up


在 Docker Desktop 中,你应该会看到类似上面的容器。这样,我们已经设置好了开源向量数据库。

构建保险手册知识库

项目的下一部分是使用 LangChain、HuggingFace 和 Weaviate 构建知识库。此部分的目标是构建一个向量数据库,该数据库包含来自《保险手册》的嵌入结果,可以从应用程序中访问。

首先,我们将设置 Weaviate 客户端和嵌入模型。可以使用以下代码进行设置:

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Weaviate
import weaviateclient = weaviate.Client(url="http://localhost:8081", 
)model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}hf = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs
)

在上面的代码中,我们通过连接到 localhost:8081 来设置 Weaviate 客户端,并使用简单的 mpnet 句子转换模型设置 HuggingFace 嵌入模型。

接下来,我们将使用 LangChain 读取《保险手册》PDF 并将文本数据分割成一定的块。

loader = PyPDFLoader("Insurance_Handbook_20103.pdf")
pages = loader.load_and_split()text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=50,length_function=len,is_separator_regex=False,
)texts = text_splitter.split_documents(pages)
full_texts = [i.page_content for i in texts]

分割文本数据非常重要,因为它有助于处理模型的文本大小限制,并确保每个文本段都是有意义且上下文完整的。如果觉得结果不好,可以尝试调整 chunk_size 和 chunk_overlap 参数。

最后,我们将嵌入的文本数据存储在 Weaviate 向量数据库中,使用以下代码:

vector_db = Weaviate.from_texts(full_texts, hf, client=client, by_text=False, index_name='BookOfInsurance', text_key='intro'
)

这样,我们已经构建好了知识库。如果你想测试数据库,可以使用以下代码进行相似性搜索:

print(vector_db.similarity_search("What is expense ratio?", k=3))

最后,记得关闭 Weaviate 客户端:

client.close()

开发基于 RAG 和文本转语音 (TTS) 的 QA-LLM 工具

在创建工具之前,我们需要设置一些实用文件。

实用文件设置

首先,我们将设置 LLM 生成模型与 LangChain 和 HuggingFace 的连接。写这篇文章时,连接过程中存在一个 bug,因此我们需要开发一个惰性连接以避免使用 HuggingFace 令牌登录。
我们会将以下代码保存到 utils 文件夹中的 hf_lazyclass.py 文件中:

from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_core.pydantic_v1 import root_validator
from langchain_core.utils import get_from_dict_or_envclass LazyHuggingFaceEndpoint(HuggingFaceEndpoint):"""LazyHuggingFaceEndpoint"""@root_validator()def validate_environment(cls, values):"""Validate that package is installed; SKIP API token validation."""try:from huggingface_hub import AsyncInferenceClient, InferenceClientexcept ImportError:msg = ("Could not import huggingface_hub python package. ""Please install it with `pip install huggingface_hub`.")raise ImportError(msg)  # noqa: B904huggingfacehub_api_token = get_from_dict_or_env(values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN")values["client"] = InferenceClient(model=values["model"],timeout=values["timeout"],token=huggingfacehub_api_token,**values["server_kwargs"],)values["async_client"] = AsyncInferenceClient(model=values["model"],timeout=values["timeout"],token=huggingfacehub_api_token,**values["server_kwargs"],)return values

接下来,我们将创建文本转语音类文件,命名为 tts_speech.py,内容如下:

import os
import uuid
from elevenlabs import VoiceSettings
from elevenlabs.client import ElevenLabsELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
client = ElevenLabs(api_key=ELEVENLABS_API_KEY,
)def text_to_speech_file(text: str) -> str:# Calling the text_to_speech conversion API with detailed parametersresponse = client.text_to_speech.convert(voice_id="pNInz6obpgDQGcFmaJgB", # Adam pre-made voiceoptimize_streaming_latency="0",output_format="mp3_22050_32",text=text,model_id="eleven_turbo_v2", # use the turbo model for low latency, for other languages use the `eleven_multilingual_v2`voice_settings=VoiceSettings(stability=0.0,similarity_boost=1.0,style=0.0,use_speaker_boost=True,),)save_file_path = f"{uuid.uuid4()}.mp3"# Writing the audio to a filewith open(save_file_path, "wb") as f:for chunk in response:if chunk:f.write(chunk)print(f"{save_file_path}: A new audio file was saved successfully!")return save_file_path

以上代码中,我们使用了预设的声音,你可以在 ElevenLabs 的 Voice Lab 中找到适合工具的声音。

开发工具

这一部分将结合所有内容,通过 Streamlit 前端展示 RAG 和 TTS 模型。

首先,设置生成模型和 Weaviate 向量数据库连接:

import streamlit as st
import weaviate
from langchain_community.vectorstores import Weaviate
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from dotenv import load_dotenv
import os
from utils.hf_lazyclass import LazyHuggingFaceEndpoint
from utils.tts_speech import text_to_speech_fileload_dotenv()
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")client = weaviate.Client(url="http://localhost:8081",  
)
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"llm = LazyHuggingFaceEndpoint(repo_id=repo_id, max_new_tokens=128, temperature=0.5, huggingfacehub_api_token=hf_token 
)model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}hf = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs
)

以上代码中,我们初始化了 Weaviate 客户端、生成 LLM 模型和 HuggingFace 嵌入模型。在这个例子中,我使用 Mistral Instruct LLM 模型作为生成 LLM 模型。

接下来,使用以下代码设置 RAG 系统:

response = client.schema.get()weaviate_vectorstore = Weaviate(client=client, index_name=response['classes'][0]['class'], text_key="intro", by_text=False, embedding=hf)
retriever = weaviate_vectorstore.as_retriever()qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever
)

最后,我们使用以下代码设置了 Streamlit 文件,使其能够接受文本输入并提供音频输出。

st.title('Insurance Handbook QA with Voice')st.write("""
这是一个简单的应用程序,我们利用 RAG 和文本转语音来回答您关于保险的所有问题。在这个应用程序中,我们使用以下技术栈:1. Weaviate 向量数据库与 Docker 主机
2. LangChain LLM 框架
3. HuggingFace 嵌入模型 all-mpnet-base-v2
4. HuggingFace 生成模型 Mistral-7B-Instruct-v0.2
5. Elevenlabs 文本转语音模型
6. Streamlit 用于前端           
""")if 'prompt' not in st.session_state:st.session_state.prompt = ''if 'audiofile' not in st.session_state:st.session_state.audiofile = ''  query  = st.text_input("请输入您的保险问题👇", "")
if st.button("回答我的问题"):st.session_state.prompt = queryresponse = qa_chain.invoke(query)st.session_state.audiofile = text_to_speech_file(response['result'])st.audio(st.session_state.audiofile, format="audio/mpeg", loop = False)

如果一切顺利,让我们运行这个 Streamlit 文件。您应该会看到页面和下面的图像类似。

好的,请把音频文件上传,我会帮你处理翻译。如果需要,我也可以提供文字翻译。请告诉我你的具体需求。

这就是全部。你可以调整模型、语音和前端页面,使其更加有趣。你还可以为你所需的领域构建自己的知识库。

结论

我们已经探索了如何使用RAG(检索增强生成)和文本转语音技术来构建我们的问答工具。通过结合开源工具和模型,我们可以构建一个企业所需要的高级工具。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群, 想要获取最新面试题、了解最新面试动态的、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流

用通俗易懂方式讲解系列

  • 《大模型面试宝典》(2024版) 正式发布!

  • 《大模型实战宝典》(2024版)正式发布!

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)

  • 用通俗易懂的方式讲解:1.6万字全面掌握 BERT

  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线

  • 用通俗易懂的方式讲解:28张图全解深度学习知识!

  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库

  • 用通俗易懂的方式讲解:实体关系抽取入门教程

  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer

  • 用通俗易懂的方式讲解:图解 Transformer 架构

  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)

  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期

  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain

  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统

  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览

  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序

  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA

  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。

  • 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。

  • 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。

  • 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统

  • 用通俗易懂的方式讲解:面试字节大模型算法岗(实习)

  • 用通俗易懂的方式讲解:大模型算法岗(含实习)最走心的总结

  • 用通俗易懂的方式讲解:大模型微调方法汇总

参考链接:https://pub.towardsai.net/crafting-qa-tool-with-reading-abilities-using-rag-and-text-to-speech-d4208330a1e4

这篇关于使用RAG和文本转语音功能,我构建了一个 QA 问答机器人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/996739

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

最好用的WPF加载动画功能

《最好用的WPF加载动画功能》当开发应用程序时,提供良好的用户体验(UX)是至关重要的,加载动画作为一种有效的沟通工具,它不仅能告知用户系统正在工作,还能够通过视觉上的吸引力来增强整体用户体验,本文给... 目录前言需求分析高级用法综合案例总结最后前言当开发应用程序时,提供良好的用户体验(UX)是至关重要

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作