【多模态】31、Qwen-VL | 一个开源的全能的视觉-语言多模态大模型

2024-05-16 00:36

本文主要是介绍【多模态】31、Qwen-VL | 一个开源的全能的视觉-语言多模态大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 模型架构
      • 2.2 输入和输出
      • 2.3 训练
    • 三、效果
      • 3.1 Image Caption 和 General Visual Question Answering
      • 3.2 Text-oriented Visual Question Answering
      • 3.3 Refer Expression Comprehension
      • 3.4 视觉-语言任务的少样本学习
      • 3.5 真实世界用户行为中的指令遵循

论文:Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond

代码:https://github.com/QwenLM/Qwen-VL

出处:阿里

时间:2023.10

贡献:

  • Qwen-VL 在大量以视觉为中心的理解基准上实现了优秀的性能
  • Qwen-VL 支持多语言,尤其是英文和中文,自然的支持英文、中文和多语言指令
  • Qwen-VL 在训练阶段支持任意交错的图像-文本数据作为输入
  • Qwen-VL 在细粒度的图像理解上更好,因为在训练中使用了更高分辨率的输入大小和细粒度的语料库,有很好的文本阅读、面向文本的问答、细粒度的对话等能力

在这里插入图片描述

一、背景

尽管现有的很多多模态大模型取得了不错的效果,但开源的多模态大模型仍然有训练和优化不足的问题,也落后于专有模型,此外,现实场景非常复杂,所以地力度的视觉理解很重要,但相关研究不是很多。

本文开源了一系列 Qwen 家族的模型 Qwen-VL 系列,该系列模型是基于 Qwen-7B 语言模型的,作者通过引入了一个新的 visual capacity,包括一个 language-aligned 视觉编码器和一个 position-aware adapter,来提升 LLM 基准。

整个模型架构及输入输出都很简洁,且作者使用了一个三阶段的训练流程

Qwen-VL 的能力:

  • 能够感知和理解视觉输入,根据给定的提示生成回答,并完成各种视觉任务,如 caption、问题回答等

Qwen-VL-Chat:

  • 基于 Qwen-VL 的指令调优视觉语言聊天机器人,能够和用户交流,根据用户意图来感知输入图像

在这里插入图片描述

二、方法

2.1 模型架构

网络整体架构由 3 个部分组成,如表 1 所示:

  • 大型语言模型:Qwen-VL 使用大语言模型 Qwen-7b 作为其基础组件,使用预训练好的权重来初始化模型
  • 视觉编码器:Qwen-VL 使用 ViT 架构作为视觉编码器,具体的是使用的 Openclip 的 ViT-bigg 预训练的权重进行初始化,在训练过程中,输入图像都被调整到特定的分辨率。且视觉编码器将图像分割成 14 大小的 patch 后生成一组图像特征
  • position-aware Vision-Language Adapter:为了环境长图像特征序列带来的效率问题, Qwen-VL 引入了一个压缩图像特征的适配器,该适配器包含一个随机初始化的单层 cross-attention 模块。该模块使用一组可训练的向量(embedding)来作为 query,encoder 提取到的图像特征作为 key,这种机制将视觉特征序列压缩为固定长度 256。

在这里插入图片描述

2.2 输入和输出

1、图像输入

图像通过 visual encoder 和 adapter 进行处理,产生固定长度的图像特征序列,为了区分图像特征输入和文本特征输入,在图像特征序列的开始和结束添加了两个特殊标记 ( 和 ),分别表示开始和结束

2、bounding box 输入和输出

为了增强模型对细粒度视觉的理解和定位,Qwen-VL 的训练包括 region description、questions、detections,该任务需要模型以指定格式准确理解和生成区域描述。

对应任何给定的 bbox,使用归一化方法将其归一化到 [0,1000],并转换为指定的字符串格式:“(x1,y1),(x2,y2)”,且在开始和结束处添加 ( 和 ),与其相关的描述语句还会添加特殊标记 ( 和 )

2.3 训练

Qwen-VL 的训练分为三个阶段,前两个阶段是预训练,最后一个阶段是指令微调

1、预训练

在第一预训练结果,作者主要使用 large-scale,weakly labeled,web-crawled 的 image-text pairs 来训练,数据如表 2 所示,original dataset 包含共 50 亿的图像-文本对儿,清洗后保留了 14 亿的数据,其中 77.3% 的英文数据和 22.7% 的中文数据

在这里插入图片描述

在这个阶段,作者将大语言模型冻结,只优化 vision encoder 和 VL adapter,输入图像 resize 到了 224x224,训练的目标是最小化 text token 的 cross-entropy

最大的学习率为 2e-4,batch size 为 30720 个 pairs,整个第一阶段预训练共 50000 steps,共使用 15 亿个图像-文本 pairs

下图为 stage 1 的收敛曲线

在这里插入图片描述

2、多任务预训练

在 stage 2 会进行多任务预训练,会引入有更大分辨率和交错图文数据的高质量和细粒度数据

作者同时对 Qwen-VL 进行了 7 项任务训练,相关数据如表 3 所示,作者将 visual encoder 的输入从 224x224 提升到了 448x448

在这里插入图片描述

3、有监督微调

在这个阶段,作者对预训练后的模型使用指令微调来提升模型的指令跟随能力和对话能力,来实现交互式的 Qwen-VL-Chat 模型

数据主要来源于 caption 数据或对话数据,这些标签都是使用 LLM 模型得到的,而且这些数据往往只处理单幅图像的对话和推理,仅限于图像内容理解

数据量:350k

训练技巧:冻结 visual encoder,训练语言模型和adapter模块

在这里插入图片描述

三、效果

下面作者会对各种多模态任务进行评估,Qwen-VL 表示多任务训练后的模型(第二阶段后),Qwen-VL-chat 表示经过有监督微调(SFT)后的模型(第三阶段后)

3.1 Image Caption 和 General Visual Question Answering

在这里插入图片描述

3.2 Text-oriented Visual Question Answering

面向文本的视觉问答

在这里插入图片描述

3.3 Refer Expression Comprehension

提及表达的理解

在这里插入图片描述

3.4 视觉-语言任务的少样本学习

在这里插入图片描述

3.5 真实世界用户行为中的指令遵循

在这里插入图片描述

这篇关于【多模态】31、Qwen-VL | 一个开源的全能的视觉-语言多模态大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993369

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。