本文主要是介绍无向连通网的最小生成树算法[第3部分],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
普利姆算法的测试数据如下:每行数据表示边的两个端点和权值
10 13
1 0 4
2 1 2
3 0 3
4 3 8
5 1 2
5 2 2
5 4 1
6 3 10
7 4 4
8 5 4
8 7 6
9 6 5
9 7 2
普利姆最小生成树算法:
/*时间:2017.1.1描述:普利姆算法求解最小生成树
*/
#include<iostream>
#include<climits>
#include<cstdio>
#include<iomanip>
#include<cstring>
#include<fstream>
#define INF INT_MAX
#define FILEINPUT 1
using namespace std;typedef struct edgeNode
{int from,to;int cost;
}
EDGENODE;void creatMatrix(int **AdjMatrix,int n,int e); //构建无向图的邻接矩阵
void printMatrix(int **AdjMatrix,int n); //输出图的邻接矩阵
void initEdgeSet(int **AdjMatrix,EDGENODE *edgeSet,int n,int start); //初始化边集
int chooseEdge(EDGENODE *edgeSet,int n,int index); //从候选边集中选取权重最小的边
void modfiyEdgeSet(int **AdjMatrix,EDGENODE *edgeSet,int n,int index,int to);//调整候选边集
void primMst(int **AdjMatrix,EDGENODE *edgeSet,int n,int start); //普利姆算法
void printMst(EDGENODE *edgeSet,int n); //输出最小生成树选举结果int main()
{//freopen("data.txt","r",stdin);#if FILEINPUT //条件编译:输入重定向到文件(输入邻接矩阵数据)ifstream fin("data.txt");streambuf *strm_buf=cin.rdbuf();cin.rdbuf(fin.rdbuf());#endifint i,n,e,start;int **AdjMatrix; //存储邻接矩阵EDGENODE *edgeSet; //存储最小生成树选的边集cout<<"Enter the number of nodes and edges:"<<endl;cin>>n>>e;AdjMatrix=(int **)malloc(sizeof(int *)*n); //为邻接矩阵分配存储空间for(i=0;i<n;i++)AdjMatrix[i]=(int *)malloc(sizeof(int)*n);edgeSet=(EDGENODE *)malloc(sizeof(EDGENODE)*n); //为最小生成树边集合配存储空间creatMatrix(AdjMatrix,n,e); //构建无向图的邻接矩阵printMatrix(AdjMatrix,n); //输出图的邻接矩阵#if FILEINPUT //条件编译:输入重定向到键盘(输入普利姆算法的起始顶点)cin.rdbuf(strm_buf);#endifwhile(1){cout<<"Enter the start position of the Graph: ";cin>>start;primMst(AdjMatrix,edgeSet,n,start);printMst(edgeSet,n);}#if FILEINPUT //条件编译:输入重定向到键盘(输入普利姆算法的起始顶点)fin.close();#endifreturn 0;
}void creatMatrix(int **AdjMatrix,int n,int e)
{int i,j,from,to,cost;for(i=0;i<n;i++)for(j=0;j<n;j++)AdjMatrix[i][j]=INF;cout<<"<from----to----cost>"<<endl;for(i=0;i<e;i++){cin>>from>>to>>cost;AdjMatrix[from][to]=cost;AdjMatrix[to][from]=cost;}
}void printMatrix(int **AdjMatrix,int n)
{int i,j;for(i=0;i<n;i++){for(j=0;j<n;j++)if(AdjMatrix[i][j]==INF)cout<<setiosflags(ios::left)<<setw(6)<<"INF";elsecout<<setiosflags(ios::left)<<setw(6)<<AdjMatrix[i][j];cout<<endl;}
}void initEdgeSet(int **AdjMatrix,EDGENODE *edgeSet,int n,int start)
{int i,index=0;for(i=0;i<n;i++)if(i!=start){edgeSet[index].from=start;edgeSet[index].to=i;edgeSet[index].cost=AdjMatrix[start][i];index++;}
}int chooseEdge(EDGENODE *edgeSet,int n,int index)
{int minCost=INF,minPos,i;for(i=index;i<n-1;i++)if(edgeSet[i].cost<minCost){minCost=edgeSet[i].cost;minPos=i;}if(minCost==INF){cout<<"The Graph is disconnected!"<<endl;exit(1);//图不连通,程序结束}return minPos;
}void modfiyEdgeSet(int **AdjMatrix,EDGENODE *edgeSet,int n,int index,int to)
{int i,cost;for(i=index;i<n-1;i++){cost=AdjMatrix[to][edgeSet[i].to];if(cost<edgeSet[i].cost){edgeSet[i].cost=cost;edgeSet[i].from=to;}}
}void primMst(int **AdjMatrix,EDGENODE *edgeSet,int n,int start)
{int iter,minPos,to;EDGENODE edge;initEdgeSet(AdjMatrix,edgeSet,n,start); //初始化边集合for(iter=0;iter<n-1;iter++){minPos=chooseEdge(edgeSet,n,iter); //从边集中选择取值最小边edge=edgeSet[minPos]; //将选择的最小边edgeSet[iter]edgeSet[minPos]=edgeSet[iter]; edgeSet[iter]=edge;to=edgeSet[iter].to; //将选择的边结点加入U集合modfiyEdgeSet(AdjMatrix,edgeSet,n,iter,to);//调整候选边结点}
}void printMst(EDGENODE *edgeSet,int n)
{int index;int totalCost=0;for(index=0;index<n-1;index++){cout<<"("<<edgeSet[index].from<<","<<edgeSet[index].to<<") "<<edgeSet[index].cost<<endl;totalCost+=edgeSet[index].cost;}cout<<"totalCost: "<<totalCost<<endl;
}
克鲁斯科尔算法的测试数据:第一行表示图的顶点数和边数;从第二行开始表示表的顶点编号和权值
10 13
0 1 4
1 2 2
0 3 3
3 4 8
1 5 2
2 5 2
4 5 1
3 6 10
4 7 4
5 8 4
7 8 6
6 9 5
7 9 2
克鲁萨卡尔算法:
/*时间:2017.1.1描述:结合并查集实现克鲁斯卡尔算法求最小生成树
*/
#include<iostream>
#include<climits>
#include<iomanip>
#include<cstring>
#include<fstream>
#include<algorithm>
#define INF INT_MAX
#define FILEINPUT 1
using namespace std;typedef struct edgeNode
{int from,to;int cost;
}
EDGENODE;bool operator<(const EDGENODE &a,const EDGENODE &b)
{if(a.cost!=b.cost)return a.cost<b.cost;else if(a.from!=b.from)return a.from<b.from;else return a.to<b.to;
}int flag[512];void creatMatrix(int **AdjMatrix,EDGENODE *edgeSet,int n,int e);
void printMatrix(int **AdjMatrix,int n);
void printEdgeSet(EDGENODE *edgeSet,int e);
void kruskalMst(EDGENODE *edgeSet,int n,int e);
int findRootEdge(int nodeNumber);
int mergeEdge(int nodeFrom,int nodeTo);int main()
{//freopen("data.txt","r",stdin);#if FILEINPUT //条件编译:输入重定向到文件(输入邻接矩阵数据)ifstream fin("data.txt");streambuf *strm_buf=cin.rdbuf();cin.rdbuf(fin.rdbuf());#endifint i,n,e;int **AdjMatrix; //存储邻接矩阵EDGENODE *edgeSet; //边集合cout<<"Enter the number of nodes and edges:"<<endl; cin>>n>>e;AdjMatrix=(int **)malloc(sizeof(int *)*n); //为邻接矩阵分配存储空间for(i=0;i<n;i++)AdjMatrix[i]=(int *)malloc(sizeof(int)*n);edgeSet=(EDGENODE *)malloc(sizeof(EDGENODE)*e); //为边集合分配存储空间for(i=0;i<n;i++) //初始化并查集flag[i]=i;creatMatrix(AdjMatrix,edgeSet,n,e);printMatrix(AdjMatrix,n);kruskalMst(edgeSet,n,e);#if FILEINPUT //条件编译:输入重定向到键盘(输入普利姆算法的起始顶点)cin.rdbuf(strm_buf);fin.close();#endifreturn 0;
}void creatMatrix(int **AdjMatrix,EDGENODE *edgeSet,int n,int e)
{int i,j,from,to,cost;EDGENODE edge;for(i=0;i<n;i++)for(j=0;j<n;j++)AdjMatrix[i][j]=INF;cout<<"<from----to----cost>"<<endl;for(i=0;i<e;i++){cin>>from>>to>>cost;AdjMatrix[from][to]=cost;AdjMatrix[to][from]=cost;edge.from=from;edge.to=to;edge.cost=cost;edgeSet[i]=edge;}
}void printMatrix(int **AdjMatrix,int n)
{int i,j;for(i=0;i<n;i++){for(j=0;j<n;j++){if(AdjMatrix[i][j]==INF)cout<<setiosflags(ios::left)<<setw(6)<<"INF";elsecout<<setiosflags(ios::left)<<setw(6)<<AdjMatrix[i][j];}cout<<endl;}
}void printEdgeSet(EDGENODE *edgeSet,int e)
{int index=0;for(index=0;index<e;index++)cout<<"("<<edgeSet[index].from<<","<<edgeSet[index].to<<") "<<edgeSet[index].cost<<endl;
}int findRootEdge(int nodeNumber)
{int i,j,root;root=nodeNumber;while (flag[root]!=root) //循环结束,则找到同一边集中的最小结点编号root= flag[root]; i=nodeNumber;while(i!=root) //本循环修改查找路径中所有边结点编号{j=flag[i];flag[i]=root;i=j;}return root;
}int mergeEdge(int nodeFrom,int nodeTo) //边结点合并到连通图中
{int indexFrom=findRootEdge(nodeFrom);int indexTo=findRootEdge(nodeTo);if(flag[indexFrom]<flag[indexTo])flag[indexTo]=indexFrom;elseflag[indexFrom]=indexTo;if(indexFrom==indexTo)return 1;elsereturn 0;
}void kruskalMst(EDGENODE *edgeSet,int n,int e)
{int index=0;int countEdge=0;int minCost=0;//cout<<"------------------------------------"<<endl;//printEdgeSet(edgeSet,e);sort(edgeSet,edgeSet+e); //对边集进行快速排序//cout<<"------------------------------------"<<endl;//printEdgeSet(edgeSet,e);//cout<<"------------------------------------"<<endl;while(index<e){int from=edgeSet[index].from;int to=edgeSet[index].to;int cost=edgeSet[index].cost;if(mergeEdge(from,to)==0) //利用并查集判断环路,同时对查找路径进行压缩合并{countEdge++;minCost+=cost;cout<<"("<<from<<","<<to<<") "<<cost<<endl;index++;}else{index++;}if(countEdge==n-1){break;}}if(index<e) cout<<"minCost: "<<minCost<<endl;else{cout<<"The Graph is disconnected!"<<endl; //index>=e则不能构造最小生成树}
}
这篇关于无向连通网的最小生成树算法[第3部分]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!