基于卷积神经网络CNN,使用二维卷积Conv2D实现MNIST数字识别的四种方法

本文主要是介绍基于卷积神经网络CNN,使用二维卷积Conv2D实现MNIST数字识别的四种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

手写

前言

系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎
在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控循环单元、大型语言模型和强化学习模型

使用 MNIST 数据集进行手写数字识别是一个借助神经网络完成的重要项目。深度神经网络是机器学习和人工智能的一个分支,这种网络能够从提供的无组织或无标记数据中进行无监督学习。

我们在此基础上更进一步,我们的手写数字识别系统不仅能检测手写数字的扫描图像,还能借助集成的图形用户界面在屏幕上书写数字进行识别。它主要检测手写数字的扫描图像。

目录

  • 1. 相关库和数据集
    • 1.1 相关库介绍
    • 1.2 数据集介绍
  • 2. 数据预处理
    • 2.1 特征缩放
    • 2.2 数据重塑
    • 2.3 格式变换
  • 3. 模型建立
    • 3.1 数据准备
    • 3.2 构建模型(4 种不同的模型结构)
      • 3.2.1 密集神经网络
      • 3.2.2 二维卷积网络(密集+最大池化)
      • 3.2.3 二维卷积网络(密集+最大池化+Dropout)
      • 3.2.4 二维卷积网络(密集+最大池化+Dropout+BN算法)
  • 4. 模型评估
    • 4.1 预测性能
    • 4.2 比較結果
    • 4.3 结果可视化

1. 相关库和数据集

1.1 相关库介绍

Python 库使我们能够非常轻松地处理数据并使用一行代码执行典型和复杂的任务。

  • Numpy – 是一种开源的数值计算扩展,可用来存储和处理大型矩阵,缩短大型计算的时间。
  • Matplotlib – 此库用于绘制可视化效果,用于展现数据之间的相互关系。
  • TensorFlow™ – 是一个基于数据流编程的符号数学系统,被广泛应用于各类机器学习算法的编程实现。
  • Keras – 是一个由Python编写的开源人工神经网络库,可以作为Tensorflow的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。
import numpy as np
import matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_split
import tensorflow as tffrom tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
from keras.utils import to_categorical

1.2 数据集介绍

MNIST 数据集是一组由中学生和美国人口普查局雇员手写的 70,000 个小图,由高中生和美国人口普查局的员工手写而成。每个图像都标有所代表的数字,人们对该数据集进行了大量研究,因此它经常被称为机器学习的 “Hello World”。

(x_train, y_train), (x_test, y_test) = mnist.load_data()
print("Training Shape:", x_train.shape, y_train.shape)
print("----------------------------------------")
print("Testing Shape:", x_test.shape, y_test.shape)
Training Shape: (60000, 28, 28) (60000,)
----------------------------------------
Testing Shape: (10000, 28, 28) (10000,)

2. 数据预处理

2.1 特征缩放

①将像素值(0-255)归一化为(0-1),以便更好地进行训练

# Normalize pixel values (0-255) to (0-1) --> 0 for better training
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0print("Min: %.3f, Max: %.3f" % (x_train.min(), x_train.max()))
print("Min: %.3f, Max: %.3f" % (x_test.min(), x_test.max()))
Min: 0.000, Max: 1.000
Min: 0.000, Max: 1.000

2.2 数据重塑

②重塑数据以便输入神经网络

# Reshape the data for input to the neural network (28x28 pixels)
x_train = x_train.reshape((x_train.shape[0], 28, 28, 1))
x_test = x_test.reshape((x_test.shape[0], 28, 28, 1))print("Training Shape:", x_train.shape)
print("----------------------------")
print("Testing Shape:", x_test.shape)
Training Shape: (60000, 28, 28, 1)
----------------------------
Testing Shape: (10000, 28, 28, 1)

2.3 格式变换

③将标签从整数格式转换为 one-hot 编码向量

y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)print(y_train[0])
print(y_test[0])
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

3. 模型建立

3.1 数据准备

①将数据拆分为训练数据、验证数据和测试数据

x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.20, random_state=1)
print("Training Shape:", x_train.shape, y_train.shape)
print("------------------------------------------")
print("validation Shape:", x_val.shape, y_val.shape)
Training Shape: (48000, 28, 28, 1) (48000, 10)
------------------------------------------
validation Shape: (12000, 28, 28, 1) (12000, 10)

3.2 构建模型(4 种不同的模型结构)

3.2.1 密集神经网络

# 使用Sequential模型,并通过Input层指定输入形状
model_1 = keras.Sequential([layers.Input(shape=(28, 28, 1)),  # 这里的Input层定义了模型的输入形状layers.Flatten(),layers.Dense(512, activation='relu'),layers.Dense(256, activation='relu'),layers.Dense(10, activation='softmax')
])
# compile the model
model_1.compile(optimizer= 'adam',loss='categorical_crossentropy',metrics=['accuracy']
)

模型概要

model_1.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ flatten (Flatten)(None, 784)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense)(None, 512)401,920 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense)(None, 256)131,328 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_2 (Dense)(None, 10)2,570 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 535,818 (2.04 MB)Trainable params: 535,818 (2.04 MB)Non-trainable params: 0 (0.00 B)

模型训练

model_1.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=10, batch_size=32)
Epoch 1/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 6s 4ms/step - accuracy: 0.8948 - loss: 0.3426 - val_accuracy: 0.9642 - val_loss: 0.1150
Epoch 2/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9745 - loss: 0.0825 - val_accuracy: 0.9719 - val_loss: 0.0933
Epoch 3/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.9829 - loss: 0.0534 - val_accuracy: 0.9727 - val_loss: 0.0980
Epoch 4/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9865 - loss: 0.0380 - val_accuracy: 0.9709 - val_loss: 0.1073
Epoch 5/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9892 - loss: 0.0302 - val_accuracy: 0.9778 - val_loss: 0.0905
Epoch 6/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9927 - loss: 0.0225 - val_accuracy: 0.9760 - val_loss: 0.1015
Epoch 7/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9936 - loss: 0.0186 - val_accuracy: 0.9775 - val_loss: 0.0990
Epoch 8/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.9933 - loss: 0.0196 - val_accuracy: 0.9778 - val_loss: 0.1068
Epoch 9/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9939 - loss: 0.0182 - val_accuracy: 0.9772 - val_loss: 0.1158
Epoch 10/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9938 - loss: 0.0182 - val_accuracy: 0.9770 - val_loss: 0.1083

模型评估

test_loss_1, test_accuracy_1 = model_1.evaluate(x_test, y_test)print("\nAccuracy =", test_accuracy_1, "\n-----------------------------", "\nLoss =", test_loss_1)
313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 5ms/step - accuracy: 0.9749 - loss: 0.1182Accuracy = 0.978600025177002 
----------------------------- 
Loss = 0.09816069155931473

3.2.2 二维卷积网络(密集+最大池化)

model_2 = keras.Sequential([layers.Input(shape=(28, 28, 1)),layers.Conv2D(32, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(64, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(10, activation='softmax')
])
# compile the model
model_2.compile(optimizer= 'Adam',loss='categorical_crossentropy',metrics=['accuracy']
)

模型概要

model_2.summary()
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d (Conv2D)(None, 26, 26, 32)320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d (MaxPooling2D)(None, 13, 13, 32)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_1 (Conv2D)(None, 11, 11, 64)18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_1 (MaxPooling2D)(None, 5, 5, 64)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_1 (Flatten)(None, 1600)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_3 (Dense)(None, 128)204,928 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_4 (Dense)(None, 10)1,290 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 225,034 (879.04 KB)Trainable params: 225,034 (879.04 KB)Non-trainable params: 0 (0.00 B)

模型训练

model_2.fit(x_train, y_train, batch_size=32, validation_data=(x_val, y_val), epochs=10)
Epoch 1/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9023 - loss: 0.3260 - val_accuracy: 0.9793 - val_loss: 0.0674
Epoch 2/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9849 - loss: 0.0485 - val_accuracy: 0.9789 - val_loss: 0.0650
Epoch 3/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9909 - loss: 0.0299 - val_accuracy: 0.9829 - val_loss: 0.0585
Epoch 4/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9933 - loss: 0.0195 - val_accuracy: 0.9861 - val_loss: 0.0483
Epoch 5/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9937 - loss: 0.0173 - val_accuracy: 0.9868 - val_loss: 0.0493
Epoch 6/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9964 - loss: 0.0112 - val_accuracy: 0.9873 - val_loss: 0.0515
Epoch 7/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9963 - loss: 0.0101 - val_accuracy: 0.9865 - val_loss: 0.0533
Epoch 8/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9963 - loss: 0.0098 - val_accuracy: 0.9867 - val_loss: 0.0603
Epoch 9/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9979 - loss: 0.0058 - val_accuracy: 0.9880 - val_loss: 0.0528
Epoch 10/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9983 - loss: 0.0052 - val_accuracy: 0.9884 - val_loss: 0.0608

模型评估

test_loss_2, test_accuracy_2 = model_2.evaluate(x_test, y_test)print("\nAccuracy =", test_accuracy_2, "\n-----------------------------", "\nLoss =", test_loss_2)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9851 - loss: 0.0610Accuracy = 0.9889000058174133 
----------------------------- 
Loss = 0.046354446560144424

3.2.3 二维卷积网络(密集+最大池化+Dropout)

model_3 = keras.Sequential([layers.Input(shape=(28, 28, 1)),layers.Conv2D(32, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(64, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(128, (3,3), activation='relu'),layers.Flatten(),layers.Dropout(0.5),layers.Dense(128, activation='relu'),layers.Dropout(0.5),layers.Dense(10, activation='softmax')
])
model_3.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']
)

模型概要

model_3.summary()
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d_2 (Conv2D)(None, 26, 26, 32)320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_2 (MaxPooling2D)(None, 13, 13, 32)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_3 (Conv2D)(None, 11, 11, 64)18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_3 (MaxPooling2D)(None, 5, 5, 64)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_4 (Conv2D)(None, 3, 3, 128)73,856 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_2 (Flatten)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout (Dropout)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_5 (Dense)(None, 128)147,584 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_1 (Dropout)(None, 128)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_6 (Dense)(None, 10)1,290 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 241,546 (943.54 KB)Trainable params: 241,546 (943.54 KB)Non-trainable params: 0 (0.00 B)

模型训练

model_3.fit(x_train, y_train, batch_size=32, validation_data=(x_val, y_val), epochs=10)
Epoch 1/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 9s 5ms/step - accuracy: 0.8248 - loss: 0.5350 - val_accuracy: 0.9796 - val_loss: 0.0631
Epoch 2/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9706 - loss: 0.0949 - val_accuracy: 0.9853 - val_loss: 0.0475
Epoch 3/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9805 - loss: 0.0652 - val_accuracy: 0.9874 - val_loss: 0.0422
Epoch 4/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9840 - loss: 0.0566 - val_accuracy: 0.9894 - val_loss: 0.0381
Epoch 5/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 10s 5ms/step - accuracy: 0.9867 - loss: 0.0456 - val_accuracy: 0.9895 - val_loss: 0.0380
Epoch 6/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9879 - loss: 0.0389 - val_accuracy: 0.9900 - val_loss: 0.0338
Epoch 7/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9888 - loss: 0.0378 - val_accuracy: 0.9896 - val_loss: 0.0367
Epoch 8/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9906 - loss: 0.0332 - val_accuracy: 0.9872 - val_loss: 0.0484
Epoch 9/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9901 - loss: 0.0338 - val_accuracy: 0.9917 - val_loss: 0.0319
Epoch 10/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9913 - loss: 0.0263 - val_accuracy: 0.9911 - val_loss: 0.0346

模型评估

test_loss_3, test_accuracy_3 = model_3.evaluate(x_test, y_test)print("\nAccuracy =", test_accuracy_3, "\n-----------------------------", "\nLoss =", test_loss_3)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9883 - loss: 0.0389Accuracy = 0.991100013256073 
----------------------------- 
Loss = 0.030680162832140923

3.2.4 二维卷积网络(密集+最大池化+Dropout+BN算法)

model_4 = keras.Sequential([layers.Input(shape=(28, 28, 1)),layers.Conv2D(32, (3,3), activation='relu'),layers.BatchNormalization(),layers.MaxPooling2D((2,2)),layers.Conv2D(64, (3,3), activation='relu'),layers.BatchNormalization(),layers.MaxPooling2D((2,2)),layers.Conv2D(128, (3,3), activation='relu'),layers.Flatten(),layers.Dropout(0.2),             # using 20% dropout instead of 50%layers.Dense(128, activation='relu'),layers.Dropout(0.2),layers.Dense(10, activation='softmax'),
])
model_4.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']
)

模型概要

model_4.summary()
Model: "sequential_3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d_5 (Conv2D)(None, 26, 26, 32)320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ batch_normalization                  │ (None, 26, 26, 32)128 │
│ (BatchNormalization)                 │                             │                 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_4 (MaxPooling2D)(None, 13, 13, 32)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_6 (Conv2D)(None, 11, 11, 64)18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ batch_normalization_1                │ (None, 11, 11, 64)256 │
│ (BatchNormalization)                 │                             │                 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_5 (MaxPooling2D)(None, 5, 5, 64)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_7 (Conv2D)(None, 3, 3, 128)73,856 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_3 (Flatten)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_2 (Dropout)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_7 (Dense)(None, 128)147,584 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_3 (Dropout)(None, 128)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_8 (Dense)(None, 10)1,290 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 241,930 (945.04 KB)Trainable params: 241,738 (944.29 KB)Non-trainable params: 192 (768.00 B)

模型训练

model_4.fit(x_train, y_train, batch_size=64, validation_data=(x_val, y_val), epochs=6)
Epoch 1/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 12s 14ms/step - accuracy: 0.9043 - loss: 0.3018 - val_accuracy: 0.9855 - val_loss: 0.0485
Epoch 2/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9841 - loss: 0.0517 - val_accuracy: 0.9862 - val_loss: 0.0458
Epoch 3/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9882 - loss: 0.0379 - val_accuracy: 0.9881 - val_loss: 0.0442
Epoch 4/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9906 - loss: 0.0286 - val_accuracy: 0.9873 - val_loss: 0.0452
Epoch 5/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9923 - loss: 0.0252 - val_accuracy: 0.9845 - val_loss: 0.0545
Epoch 6/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9923 - loss: 0.0236 - val_accuracy: 0.9871 - val_loss: 0.0486

模型评估

test_loss_4, test_accuracy_4 = model_4.evaluate(x_test, y_test)print("\nAccuracy =", test_accuracy_4, "\n-----------------------------", "\nLoss =", test_loss_4)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9856 - loss: 0.0679Accuracy = 0.9901000261306763 
----------------------------- 
Loss = 0.04728936031460762

4. 模型评估

4.1 预测性能

①构建模型性能预测函数

def predict(model, image):reshaped_image = image.reshape((1, 28, 28, 1))prediction = model.predict(reshaped_image)predicted_class = np.argmax(prediction)return predicted_class
predict_image_class = predict(model_1, x_test[0])
print("Predicted Class Label: ", predict_image_class)
print("Actual Class Label of the same image:",(np.argmax(y_test[0])))
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 38ms/step
Predicted Class Label:  7
Actual Class Label of the same image: 7

4.2 比較結果

def compare_models(models, x_test, y_test):accuracies = []model_names = []for model in models:_, accuracy = model.evaluate(x_test, y_test)accuracies.append(accuracy)best_model_index = np.argmax(accuracies)best_model = models[best_model_index]best_accuracy = accuracies[best_model_index]model_names = [f"Model {i+1}" for i in range(len(models))]plt.plot(model_names, accuracies, marker='o')plt.xlabel('Models')plt.ylabel('Accuracy')plt.title('Comparison of Model Accuracies')plt.xticks(rotation=45)plt.show()print("Comparison Results:")for i in range(len(models)):print(f"Model {i+1} - Accuracy: { accuracies[i]:.4f}")print(f"Best Model : Model {best_model_index+1}")print(f"Best Accuracy: {best_accuracy:.4f}")return best_model
models = [model_1, model_2, model_3, model_4]
best_model = compare_models(models, x_test, y_test)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9749 - loss: 0.1182
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9851 - loss: 0.0610
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9883 - loss: 0.0389
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9856 - loss: 0.0679

4.3 结果可视化

评估结果可视化

Comparison Results:
Model 1 - Accuracy: 0.9786
Model 2 - Accuracy: 0.9889
Model 3 - Accuracy: 0.9911
Model 4 - Accuracy: 0.9901
Best Model : Model 3
Best Accuracy: 0.9911

这篇关于基于卷积神经网络CNN,使用二维卷积Conv2D实现MNIST数字识别的四种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992859

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详