Python 全栈体系【四阶】(四十四)

2024-05-15 18:04

本文主要是介绍Python 全栈体系【四阶】(四十四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第五章 深度学习

九、图像分割

3. 常用模型

3.4 DeepLab 系列
3.4.3 DeepLab v3(2017)

在DeepLab v3中,主要进行了以下改进:

  • 使用更深的网络结构,以及串联不同膨胀率的空洞卷积,来获取更多的上下文信息
  • 优化Atrous Spatial Pyramid Pooling
  • 去掉条件随机场
3.4.3.1 串联结构

在这里插入图片描述

上图演示了ResNet结构中,不使用空洞卷积(上)和使用不同膨胀率的空洞卷积(下)的差异,通过在Block3后使用不同膨胀率的空洞卷积,保证在扩大视野的情况下,保证特征图的分辨率。

3.4.3.2 并行结构

作者通过实验发现,膨胀率越大,卷积核中的有效权重越少,当膨胀率足够大时,只有卷积核最中间的权重有效,即退化成了1x1卷积核,并不能获取到全局的context信息。为了解决这个问题,作者在最后一个特征上使用了全局平均池化(global everage pooling)(包含1x1卷积核,输出256个通道,正则化,通过bilinear上采样还原到对应尺度)。修改后的ASPP结构图如下:

在这里插入图片描述

3.4.3.3 Mult-grid策略

作者考虑了multi-grid方法,即每个block中的三个卷积有各自unit rate,例如Multi Grid = (1, 2, 4),block的dilate rate=2,则block中每个卷积的实际膨胀率=2* (1, 2, 4)=(2,4,8)。

3.4.3.4 训练策略
  • 采用变化的学习率,学习率衰减策略如下(其中,power设置为0.9):

( 1 − i t e r m a x _ i t e r ) p o w e r (1 - \frac{iter}{max\_iter})^{power} (1max_iteriter)power

  • 裁剪。在训练和测试期间,在PASCAL VOC 2012数据集上采用的裁剪尺寸为513,以保证更大的膨胀率有效。
  • Batch Normalization。先在增强数据集上output stride = 16(输入图像与输出特征大小的比例),batch size=16,BN参数衰减为0.9997,训练30k个iter。之后在官方PASCAL VOC 2012的trainval集上冻结BN参数, output stride = 8,batch size=8,训练30k个iter。
  • 采用上采样真值计算Loss。DeepLabv1/v2中都是下采样的真值来计算loss,这样会让细节标记产生损失,本模型使用上采样最后的输出结果计算。
  • 数据随机处理。在训练阶段,对输入的图像进行随机缩放(缩放率在0.5-2.0之间),并随机执行左右翻转。
3.4.3.5 效果
  • ResNet-50和ResNet-101结构比较,更多的级联采样能获得 更高的性能
    在这里插入图片描述

  • 各种优化测略效果实验
    在这里插入图片描述
    其中,MG表示Multi-grid,ASPP 表示Atrous spatial pyramid pooling ,OS表示output stride ,MS表示Multiscale inputs during test ,Flip表示镜像增强,COCO表示MS-COCO 预训练模型。

  • 其它模型对比(PASCAL VOC 2012 测试集)
    在这里插入图片描述

  • 分割效果展示
    在这里插入图片描述

3.4.4 DeepLab v3+
3.4.4.1 深度可分离卷积

采用深度可分离卷积,大幅度降低参数数量。

在这里插入图片描述

普通卷积。对一个三通道图像,采用4个3*3*3的卷积核,获得4个特征图,总参数量为4 × 3 × 3 × 3 = 108

在这里插入图片描述

深度可分离卷积第一步

在这里插入图片描述

深度可分离卷积第二步

深度可分离卷积分为两步:第一步逐通道卷积(参数数量3 × 3 × 3 = 27),第二步逐点卷积(参数数量1 × 1 × 3 × 4 = 12),输出4个特征图,共39个参数。

3.4.4.2 网络结构

在这里插入图片描述

  • Encoder:同DeepLabv3。

  • Decoder:先把encoder的结果上采样4倍,然后与resnet中下采样前的Conv2特征进行concat融合,再进行3*3卷积,最后上采样4倍得到输出结果。

  • 融合低层次信息前,先进行1*1卷积,目的是减少通道数,进行降维。

  • 主干网部分:采用更深的Xception网络,所有max pooling结构为stride=2的深度可卷积代替;每个3*3的depthwise卷积都跟BN和Relu。改进后的主干网结构如下:

在这里插入图片描述

3.4.4.3 结果
  • 与其它模型的对比

在这里插入图片描述

  • 在Cityspaces数据集上实验结果如下:

在这里插入图片描述

  • 分割效果展示(最后一行是失败的分割)

在这里插入图片描述

3.5 其它模型

在这里插入图片描述

4. 数据集

4.1 VOC2012

Pascal VOC 2012:有 20 类目标,这些目标包括人类、机动车类以及其他类,可用于目标类别或背景的分割。

4.2 MSCOCO

是一个新的图像识别、分割和图像语义数据集,是一个大规模的图像识别、分割、标注数据集。它可以用于多种竞赛,与本领域最相关的是检测部分,因为其一部分是致力于解决分割问题的。该竞赛包含了超过80个物体类别。

4.3 Cityscapes

50 个城市的城市场景语义理解数据集,适用于汽车自动驾驶的训练数据集,包括19种都市街道场景:road、side-walk、building、wal、fence、pole、traficlight、trafic sign、vegetation、terain、sky、person、rider、car、truck、bus、train、motorcycle 和 bicycle。该数据库中用于训练和校验的精细标注的图片数量为3475,同时也包含了 2 万张粗糙的标记图片。

4.4 Pascal Context

有 400 多类的室内和室外场景。

4.5 Stanford Background Dataset

至少有一个前景物体的一组户外场景。

5. 图像分割标注工具

labelme
  • 安装

    pip3 install labelme
    
  • 运行

    labelme
    
  • 运行界面

在这里插入图片描述

6. 代码实现

见专栏 -> 全栈资料包 -> 资源包/03_dl/DeepLab3_plus.zip

7. 附录:术语表

英文简称英文全称中文名称
Semantic Segmentation语义分割
Instance Segmentation实例分割
Panoptic Segmentation全景分割
ASPPAstrous Spatial Pyramid Pooling空洞金字塔池化
FOVField of View视野
CRFFully-connected Conditional Random Field全连接条件随机场
DSCDepthwise Separable Convolution深度可分离卷积

这篇关于Python 全栈体系【四阶】(四十四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/992536

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专