线性/非线性最小二乘 与 牛顿/高斯牛顿/LM 原理及算法

2024-05-15 10:28

本文主要是介绍线性/非线性最小二乘 与 牛顿/高斯牛顿/LM 原理及算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘分为线性最小二乘非线性最小二乘

最小二乘目标函数都是min ||f(x)||2

  • 若f(x) = ax + b,就是线性最小二乘;
  • 若f(x) = ax2 + b / ax2 + bx 之类的,就是非线性最小二乘;

1. 求解线性最小二乘

【参考】

2. 求解非线性最小二乘

需要用到牛顿法,高斯牛顿法,或者LM法
目标函数都是min F(x) = min ||f(x)||2
求解的时候需要求解的是f(x)的最小值,其实求解的就是f(x)'=0的地方

(1) 牛顿法/高斯梯度下降

牛顿法是将f(x)进行二阶泰勒展开: f(x)=f(xk)+f’(xk)(x-xk)+1/2 f’‘(xk)(x-xk)2
因为求解的其实是上式的最小值,也就是求解上式导数为0的值
核心迭代等式:xk+1 = xk - f’(xk)/f’'(xk)
其中,一阶导f’(xk)可以看成雅可比矩阵J,二阶导f’'(xk)可以看成海森矩阵H

算法

  1. 给定初值x0
  2. 对于第k次迭代,求出一阶导f’(xk)和二阶导f’'(xk)
  3. 如果f’(xk)足够小则停止;否则xk+1=xk - f’(xk)/f’'(xk),返回2

(2) 高斯牛顿法

这里的f(x)代表的是目标函数F(x)
是将f(x)进行一阶泰勒展开:f(x+dx) = f(x) + J*dx
取得最小值的条件也就是 f(x) + J * dx这个式子对dx的导数为0,
可以求解得到: JTJ * dx = - J * f(x) ,可以简化为 H dx = g
刚好利用JTJ代替H,减少H计算量

算法

求解等式为 JTJ * dx = - J * f(x),即增量方程,这里的dx也就是每次需要寻找的变化量

  1. 给定初值x0
  2. 对于第k次迭代,求出雅可比J(xk) 和f(xk)
  3. 将以上两值代入,利用方程H dx = g,求解dx
  4. 如果dx足够小则停止,否则xk+1=xk+dx,返回2

(3) LM法

高斯牛顿本质求解的是xk+1 = xk - H-1 * J(xk) * f(xk) 但是H如果非正定,那 H-1不存在,因此将其加上单位矩阵结局正定问题 :(H + kI)dx = g

计算信赖区间 ρ请添加图片描述
算法

求解等式为 (JTJ+ μI) dx = -J f(x),其中J = J(xk),f(x) = f(xk)

  1. 给定初值x0
  2. 对于第k次迭代,求出雅可比J(xk) 和f(xk)
  3. 计算ρ,若 ρ > 3/4,则 μ = 2μ;
        若 ρ < 1/4,则 μ = 0.5μ;
  4. 将J(xk) ,f(xk)和 μ代入,利用方程 (H + μI) dx = g,求解dx
  5. 如果dx足够小则停止,否则xk+1=xk+dx,返回2

参考
https://zhuanlan.zhihu.com/p/556170185?utm_id=0
https://blog.csdn.net/weixin_43763292/article/details/128060801
https://blog.csdn.net/weixin_41869763/article/details/103603089

这篇关于线性/非线性最小二乘 与 牛顿/高斯牛顿/LM 原理及算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991575

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4