YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)

本文主要是介绍YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的2024.3月份最新改进机制,由CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations论文提出的CPA-Enhancer链式思考网络CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其适用的场景非常多低照度、图像去雾、雨天、雪天均有提点效果本文内容由我独家整理!

 欢迎大家订阅我的专栏一起学习YOLO!  

c5ea51009525477b9cbcfad4326aa3b9.png

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

一、本文介绍

二、原理介绍

三、核心代码

四、手把手教你添加本文机制 

4.1 修改一

4.2 修改二 

4.3 修改三 

五、CPA-Enhancer的yaml文件和运行记录

5.1 CPA-Enhancer的yaml文件

5.2 运行记录

五、本文总结


二、原理介绍

9fb657a3ac1245baa5915abe7d12a22e.png官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转

db6c02d92f1f44f5bf90387caf72fa03.png


c1f4a4bed35e46dbb800bf969110bfe9.png

CPA-Enhancer的创新点和改进机制可以从以下几个方面进行概括:
1. 链式思考(CoT)提示:首次将链式思考(CoT)提示机制应用于物体检测任务中,通过逐步引导的方式处理未知退化图像的问题。
2. 自适应增强策略:提出了一种能够根据CoT提示动态调整其增强策略的自适应增强器,无需事先了解图像的退化类型。
3. 插件式模型设计:CPA-Enhancer设计为一个插件式模块,可以轻松地与任何现有的通用物体检测器集成,提升在退化图像上的检测性能。

改进机制
CoT提示生成模块(CGM):通过CoT提示生成模块动态生成与图像退化相关的上下文信息,使模型能够识别并适应不同类型的图像退化。
内容驱动提示块(CPB):利用内容驱动提示块加强输入特征与CoT提示之间的交互,允许模型根据退化的类型调整其增强策略。
端到端训练:CPA-Enhancer能够与目标检测器一起端到端地训练,无需单独的预训练过程或额外的监督信号。

总结
CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其插件式设计使其可以无缝集成到现有的检测框架中,为处理实际应用中遇到的各种退化条件提供了一种有效的解决方案。通过实验验证,CPA-Enhancer不仅在物体检测任务上设立了新的性能标准,还证明了其对其他下游视觉任务性能的提升作用,展示了广泛的应用潜力。


三、核心代码

核心代码的使用方式看章节四!

import torch
import torch.nn as nn
import torch.nn.functional as F
import numbers
from einops import rearrange
from einops.layers.torch import Rearrange__all__ = ['CPA_arch']class RFAConv(nn.Module):  # 基于Group Conv实现的RFAConvdef __init__(self, in_channel, out_channel, kernel_size=3, stride=1):super().__init__()self.kernel_size = kernel_sizeself.get_weight = nn.Sequential(nn.AvgPool2d(kernel_size=kernel_size, padding=kernel_size // 2, stride=stride),nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=1,groups=in_channel, bias=False))self.generate_feature = nn.Sequential(nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=kernel_size, padding=kernel_size // 2,stride=stride, groups=in_channel, bias=False),nn.BatchNorm2d(in_channel * (kernel_size ** 2)),nn.ReLU())self.conv = nn.Sequential(nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size),nn.BatchNorm2d(out_channel),nn.ReLU())def forward(self, x):b, c = x.shape[0:2]weight = self.get_weight(x)h, w = weight.shape[2:]weighted = weight.view(b, c, self.kernel_size ** 2, h, w).softmax(2)  # b c*kernel**2,h,w ->  b c k**2 h wfeature = self.generate_feature(x).view(b, c, self.kernel_size ** 2, h,w)  # b c*kernel**2,h,w ->  b c k**2 h w   获得感受野空间特征weighted_data = feature * weightedconv_data = rearrange(weighted_data, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size,# b c k**2 h w ->  b c h*k w*kn2=self.kernel_size)return self.conv(conv_data)class Downsample(nn.Module):def __init__(self, n_feat):super(Downsample, self).__init__()self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat // 2, kernel_size=3, stride=1, padding=1, bias=False),nn.PixelUnshuffle(2))def forward(self, x):return self.body(x)class Upsample(nn.Module):def __init__(self, n_feat):super(Upsample, self).__init__()self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat * 2, kernel_size=3, stride=1, padding=1, bias=False),nn.PixelShuffle(2))def forward(self, x):  # (b,c,h,w)return self.body(x)  # (b,c/2,h*2,w*2)class SpatialAttention(nn.Module):def __init__(self):super(SpatialAttention, self).__init__()self.sa = nn.Conv2d(2, 1, 7, padding=3, padding_mode='reflect', bias=True)def forward(self, x):  # x:[b,c,h,w]x_avg = torch.mean(x, dim=1, keepdim=True)  # (b,1,h,w)x_max, _ = torch.max(x, dim=1, keepdim=True)  # (b,1,h,w)x2 = torch.concat([x_avg, x_max], dim=1)  # (b,2,h,w)sattn = self.sa(x2)  # 7x7conv (b,1,h,w)return sattn * xclass ChannelAttention(nn.Module):def __init__(self, dim, reduction=8):super(ChannelAttention, self).__init__()self.gap = nn.AdaptiveAvgPool2d(1)self.ca = nn.Sequential(nn.Conv2d(dim, dim // reduction, 1, padding=0, bias=True),nn.ReLU(inplace=True),  # Relunn.Conv2d(dim // reduction, dim, 1, padding=0, bias=True),)def forward(self, x):  # x:[b,c,h,w]x_gap = self.gap(x)  #  [b,c,1,1]cattn = self.ca(x_gap)  # [b,c,1,1]return cattn * xclass Channel_Shuffle(nn.Module):def __init__(self, num_groups):super(Channel_Shuffle, self).__init__()self.num_groups = num_groupsdef forward(self, x):batch_size, chs, h, w = x.shapechs_per_group = chs // self.num_groupsx = torch.reshape(x, (batch_size, self.num_groups, chs_per_group, h, w))# (batch_size, num_groups, chs_per_group, h, w)x = x.transpose(1, 2)  # dim_1 and dim_2out = torch.reshape(x, (batch_size, -1, h, w))return outclass TransformerBlock(nn.Module):def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):super(TransformerBlock, self).__init__()self.norm1 = LayerNorm(dim, LayerNorm_type)self.attn = Attention(dim, num_heads, bias)self.norm2 = LayerNorm(dim, LayerNorm_type)self.ffn = FeedForward(dim, ffn_expansion_factor, bias)def forward(self, x):x = x + self.attn(self.norm1(x))x = x + self.ffn(self.norm2(x))return xdef to_3d(x):return rearrange(x, 'b c h w -> b (h w) c')def to_4d(x, h, w):return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)class BiasFree_LayerNorm(nn.Module):def __init__(self, normalized_shape):super(BiasFree_LayerNorm, self).__init__()if isinstance(normalized_shape, numbers.Integral):normalized_shape = (normalized_shape,)normalized_shape = torch.Size(normalized_shape)assert len(normalized_shape) == 1self.weight = nn.Parameter(torch.ones(normalized_shape))self.normalized_shape = normalized_shapedef forward(self, x):sigma = x.var(-1, keepdim=True, unbiased=False)return x / torch.sqrt(sigma + 1e-5) * self.weightclass WithBias_LayerNorm(nn.Module):def __init__(self, normalized_shape):super(WithBias_LayerNorm, self).__init__()if isinstance(normalized_shape, numbers.Integral):normalized_shape = (normalized_shape,)normalized_shape = torch.Size(normalized_shape)assert len(normalized_shape) == 1self.weight = nn.Parameter(torch.ones(normalized_shape))self.bias = nn.Parameter(torch.zeros(normalized_shape))self.normalized_shape = normalized_shapedef forward(self, x):device = x.devicemu = x.mean(-1, keepdim=True)sigma = x.var(-1, keepdim=True, unbiased=False)result = (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight.to(device) + self.bias.to(device)return resultclass LayerNorm(nn.Module):def __init__(self, dim, LayerNorm_type):super(LayerNorm, self).__init__()if LayerNorm_type == 'BiasFree':self.body = BiasFree_LayerNorm(dim)else:self.body = WithBias_LayerNorm(dim)def forward(self, x):h, w = x.shape[-2:]return to_4d(self.body(to_3d(x)), h, w)class FeedForward(nn.Module):def __init__(self, dim, ffn_expansion_factor, bias):super(FeedForward, self).__init__()hidden_features = int(dim * ffn_expansion_factor)self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,groups=hidden_features * 2, bias=bias)self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)def forward(self, x):device = x.deviceself.project_in = self.project_in.to(device)self.dwconv = self.dwconv.to(device)self.project_out = self.project_out.to(device)x = self.project_in(x)x1, x2 = self.dwconv(x).chunk(2, dim=1)x = F.gelu(x1) * x2x = self.project_out(x)return xclass Attention(nn.Module):def __init__(self, dim, num_heads, bias):super(Attention, self).__init__()self.num_heads = num_headsself.temperature = nn.Parameter(torch.ones(num_heads, 1, 1, dtype=torch.float32), requires_grad=True)self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3,bias=bias)self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)def forward(self, x):b, c, h, w = x.shapedevice = x.deviceself.qkv = self.qkv.to(device)self.qkv_dwconv = self.qkv_dwconv.to(device)self.project_out = self.project_out.to(device)qkv = self.qkv(x)qkv = self.qkv_dwconv(qkv)q, k, v = qkv.chunk(3, dim=1)q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)q = torch.nn.functional.normalize(q, dim=-1)k = torch.nn.functional.normalize(k, dim=-1)attn = (q @ k.transpose(-2, -1)) * self.temperature.to(device)attn = attn.softmax(dim=-1)out = (attn @ v)out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)out = self.project_out(out)return outclass resblock(nn.Module):def __init__(self, dim):super(resblock, self).__init__()# self.norm = LayerNorm(dim, LayerNorm_type='BiasFree')self.body = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False),nn.PReLU(),nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False))def forward(self, x):res = self.body((x))res += xreturn res#########################################################################
# Chain-of-Thought Prompt Generation Module (CGM)
class CotPromptParaGen(nn.Module):def __init__(self,prompt_inch,prompt_size, num_path=3):super(CotPromptParaGen, self).__init__()# (128,32,32)->(64,64,64)->(32,128,128)self.chain_prompts=nn.ModuleList([nn.ConvTranspose2d(in_channels=prompt_inch if idx==0 else prompt_inch//(2**idx),out_channels=prompt_inch//(2**(idx+1)),kernel_size=3, stride=2, padding=1) for idx in range(num_path)])def forward(self,x):prompt_params = []prompt_params.append(x)for pe in self.chain_prompts:x=pe(x)prompt_params.append(x)return prompt_params#########################################################################
# Content-driven Prompt Block (CPB)
class ContentDrivenPromptBlock(nn.Module):def __init__(self, dim, prompt_dim, reduction=8, num_splits=4):super(ContentDrivenPromptBlock, self).__init__()self.dim = dimself.num_splits = num_splitsself.pa2 = nn.Conv2d(2 * dim, dim, 7, padding=3, padding_mode='reflect', groups=dim, bias=True)self.sigmoid = nn.Sigmoid()self.conv3x3 = nn.Conv2d(prompt_dim, prompt_dim, kernel_size=3, stride=1, padding=1, bias=False)self.conv1x1 = nn.Conv2d(dim, prompt_dim, kernel_size=1, stride=1, bias=False)self.sa = SpatialAttention()self.ca = ChannelAttention(dim, reduction)self.myshuffle = Channel_Shuffle(2)self.out_conv1 = nn.Conv2d(prompt_dim + dim, dim, kernel_size=1, stride=1, bias=False)self.transformer_block = [TransformerBlock(dim=dim // num_splits, num_heads=1, ffn_expansion_factor=2.66, bias=False,LayerNorm_type='WithBias') for _ in range(num_splits)]def forward(self, x, prompt_param):# latent: (b,dim*8,h/8,w/8)  prompt_param3: (1, 256, 16, 16)x_ = xB, C, H, W = x.shapecattn = self.ca(x)  # channel-wise attnsattn = self.sa(x)  # spatial-wise attnpattn1 = sattn + cattnpattn1 = pattn1.unsqueeze(dim=2)  # [b,c,1,h,w]x = x.unsqueeze(dim=2)  # [b,c,1,h,w]x2 = torch.cat([x, pattn1], dim=2)  #  [b,c,2,h,w]x2 = Rearrange('b c t h w -> b (c t) h w')(x2)  # [b,c*2,h,w]x2 = self.myshuffle(x2)  # [c1,c1_att,c2,c2_att,...]pattn2 = self.pa2(x2)pattn2 = self.conv1x1(pattn2)  # [b,prompt_dim,h,w]prompt_weight = self.sigmoid(pattn2)  # Sigmodprompt_param = F.interpolate(prompt_param, (H, W), mode="bilinear")# (b,prompt_dim,prompt_size,prompt_size) -> (b,prompt_dim,h,w)prompt = prompt_weight * prompt_paramprompt = self.conv3x3(prompt)  # (b,prompt_dim,h,w)inter_x = torch.cat([x_, prompt], dim=1)  # (b,prompt_dim+dim,h,w)inter_x = self.out_conv1(inter_x)  # (b,dim,h,w) dim=64splits = torch.split(inter_x, self.dim // self.num_splits, dim=1)transformered_splits = []for i, split in enumerate(splits):transformered_split = self.transformer_block[i](split)transformered_splits.append(transformered_split)result = torch.cat(transformered_splits, dim=1)return result#########################################################################
# CPA_Enhancer
class CPA_arch(nn.Module):def __init__(self, c_in=3, c_out=3, dim=4, prompt_inch=128, prompt_size=32):super(CPA_arch, self).__init__()self.conv0 = RFAConv(c_in, dim)self.conv1 = RFAConv(dim, dim)self.conv2 = RFAConv(dim * 2, dim * 2)self.conv3 = RFAConv(dim * 4, dim * 4)self.conv4 = RFAConv(dim * 8, dim * 8)self.conv5 = RFAConv(dim * 8, dim * 4)self.conv6 = RFAConv(dim * 4, dim * 2)self.conv7 = RFAConv(dim * 2, c_out)self.down1 = Downsample(dim)self.down2 = Downsample(dim * 2)self.down3 = Downsample(dim * 4)self.prompt_param_ini = nn.Parameter(torch.rand(1, prompt_inch, prompt_size, prompt_size)) # (b,c,h,w)self.myPromptParamGen = CotPromptParaGen(prompt_inch=prompt_inch,prompt_size=prompt_size)self.prompt1 = ContentDrivenPromptBlock(dim=dim * 2 ** 1, prompt_dim=prompt_inch // 4, reduction=8)  # !!!!self.prompt2 = ContentDrivenPromptBlock(dim=dim * 2 ** 2, prompt_dim=prompt_inch // 2, reduction=8)self.prompt3 = ContentDrivenPromptBlock(dim=dim * 2 ** 3, prompt_dim=prompt_inch , reduction=8)self.up3 = Upsample(dim * 8)self.up2 = Upsample(dim * 4)self.up1 = Upsample(dim * 2)def forward(self, x):  # (b,c_in,h,w)prompt_params = self.myPromptParamGen(self.prompt_param_ini)prompt_param1 = prompt_params[2] # [1, 64, 64, 64]prompt_param2 = prompt_params[1]  # [1, 128, 32, 32]prompt_param3 = prompt_params[0]  # [1, 256, 16, 16]x0 = self.conv0(x)  # (b,dim,h,w)x1 = self.conv1(x0)  # (b,dim,h,w)x1_down = self.down1(x1)  # (b,dim,h/2,w/2)x2 = self.conv2(x1_down)  # (b,dim,h/2,w/2)x2_down = self.down2(x2)x3 = self.conv3(x2_down)x3_down = self.down3(x3)x4 = self.conv4(x3_down)device = x4.deviceself.prompt1 = self.prompt1.to(device)self.prompt2 = self.prompt2.to(device)self.prompt3 = self.prompt3.to(device)x4_prompt = self.prompt3(x4, prompt_param3)x3_up = self.up3(x4_prompt)x5 = self.conv5(torch.cat([x3_up, x3], 1))x5_prompt = self.prompt2(x5, prompt_param2)x2_up = self.up2(x5_prompt)x2_cat = torch.cat([x2_up, x2], 1)x6 = self.conv6(x2_cat)x6_prompt = self.prompt1(x6, prompt_param1)x1_up = self.up1(x6_prompt)x7 = self.conv7(torch.cat([x1_up, x1], 1))return x7if __name__ == "__main__":# Generating Sample imageimage_size = (1, 3, 640, 640)image = torch.rand(*image_size)out = CPA_arch(3, 3, 4)out = out(image)print(out.size())

四、手把手教你添加本文机制 

4.1 修改一

第一还是建立文件,我们找到如下yolov9-main/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。

bff292a267434120abcdf68c2eb75df5.png


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。

877ae272f7044aa2b5e98cafdccf0e42.png


4.3 修改三 

第三步我门中到如下文件'yolov9-main/models/yolo.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)!

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!

442a42a465544c09bf62941825179818.png

到此就修改完成了,大家可以复制下面的yaml文件运行,无需修改parse_model方法。。


五、CPA-Enhancer的yaml文件和运行记录

5.1 CPA-Enhancer的yaml文件

注意本文的代码计算量很高但是参数量不高,所以大家可能运行失败因为电脑算力不足而导致!

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, CPA_arch, []],[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 8], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# routing[6, 1, CBLinear, [[256]]], # 23[8, 1, CBLinear, [[256, 512]]], # 24[10, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 29-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 30# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 32-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 33# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 35-P5/32[[26, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

5.2 运行记录

 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏地址:

这篇关于YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991129

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

mysql重置root密码的完整步骤(适用于5.7和8.0)

《mysql重置root密码的完整步骤(适用于5.7和8.0)》:本文主要介绍mysql重置root密码的完整步骤,文中描述了如何停止MySQL服务、以管理员身份打开命令行、替换配置文件路径、修改... 目录第一步:先停止mysql服务,一定要停止!方式一:通过命令行关闭mysql服务方式二:通过服务项关闭

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类