YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)

本文主要是介绍YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的2024.3月份最新改进机制,由CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations论文提出的CPA-Enhancer链式思考网络CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其适用的场景非常多低照度、图像去雾、雨天、雪天均有提点效果本文内容由我独家整理!

 欢迎大家订阅我的专栏一起学习YOLO!  

c5ea51009525477b9cbcfad4326aa3b9.png

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

一、本文介绍

二、原理介绍

三、核心代码

四、手把手教你添加本文机制 

4.1 修改一

4.2 修改二 

4.3 修改三 

五、CPA-Enhancer的yaml文件和运行记录

5.1 CPA-Enhancer的yaml文件

5.2 运行记录

五、本文总结


二、原理介绍

9fb657a3ac1245baa5915abe7d12a22e.png官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转

db6c02d92f1f44f5bf90387caf72fa03.png


c1f4a4bed35e46dbb800bf969110bfe9.png

CPA-Enhancer的创新点和改进机制可以从以下几个方面进行概括:
1. 链式思考(CoT)提示:首次将链式思考(CoT)提示机制应用于物体检测任务中,通过逐步引导的方式处理未知退化图像的问题。
2. 自适应增强策略:提出了一种能够根据CoT提示动态调整其增强策略的自适应增强器,无需事先了解图像的退化类型。
3. 插件式模型设计:CPA-Enhancer设计为一个插件式模块,可以轻松地与任何现有的通用物体检测器集成,提升在退化图像上的检测性能。

改进机制
CoT提示生成模块(CGM):通过CoT提示生成模块动态生成与图像退化相关的上下文信息,使模型能够识别并适应不同类型的图像退化。
内容驱动提示块(CPB):利用内容驱动提示块加强输入特征与CoT提示之间的交互,允许模型根据退化的类型调整其增强策略。
端到端训练:CPA-Enhancer能够与目标检测器一起端到端地训练,无需单独的预训练过程或额外的监督信号。

总结
CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其插件式设计使其可以无缝集成到现有的检测框架中,为处理实际应用中遇到的各种退化条件提供了一种有效的解决方案。通过实验验证,CPA-Enhancer不仅在物体检测任务上设立了新的性能标准,还证明了其对其他下游视觉任务性能的提升作用,展示了广泛的应用潜力。


三、核心代码

核心代码的使用方式看章节四!

import torch
import torch.nn as nn
import torch.nn.functional as F
import numbers
from einops import rearrange
from einops.layers.torch import Rearrange__all__ = ['CPA_arch']class RFAConv(nn.Module):  # 基于Group Conv实现的RFAConvdef __init__(self, in_channel, out_channel, kernel_size=3, stride=1):super().__init__()self.kernel_size = kernel_sizeself.get_weight = nn.Sequential(nn.AvgPool2d(kernel_size=kernel_size, padding=kernel_size // 2, stride=stride),nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=1,groups=in_channel, bias=False))self.generate_feature = nn.Sequential(nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=kernel_size, padding=kernel_size // 2,stride=stride, groups=in_channel, bias=False),nn.BatchNorm2d(in_channel * (kernel_size ** 2)),nn.ReLU())self.conv = nn.Sequential(nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size),nn.BatchNorm2d(out_channel),nn.ReLU())def forward(self, x):b, c = x.shape[0:2]weight = self.get_weight(x)h, w = weight.shape[2:]weighted = weight.view(b, c, self.kernel_size ** 2, h, w).softmax(2)  # b c*kernel**2,h,w ->  b c k**2 h wfeature = self.generate_feature(x).view(b, c, self.kernel_size ** 2, h,w)  # b c*kernel**2,h,w ->  b c k**2 h w   获得感受野空间特征weighted_data = feature * weightedconv_data = rearrange(weighted_data, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size,# b c k**2 h w ->  b c h*k w*kn2=self.kernel_size)return self.conv(conv_data)class Downsample(nn.Module):def __init__(self, n_feat):super(Downsample, self).__init__()self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat // 2, kernel_size=3, stride=1, padding=1, bias=False),nn.PixelUnshuffle(2))def forward(self, x):return self.body(x)class Upsample(nn.Module):def __init__(self, n_feat):super(Upsample, self).__init__()self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat * 2, kernel_size=3, stride=1, padding=1, bias=False),nn.PixelShuffle(2))def forward(self, x):  # (b,c,h,w)return self.body(x)  # (b,c/2,h*2,w*2)class SpatialAttention(nn.Module):def __init__(self):super(SpatialAttention, self).__init__()self.sa = nn.Conv2d(2, 1, 7, padding=3, padding_mode='reflect', bias=True)def forward(self, x):  # x:[b,c,h,w]x_avg = torch.mean(x, dim=1, keepdim=True)  # (b,1,h,w)x_max, _ = torch.max(x, dim=1, keepdim=True)  # (b,1,h,w)x2 = torch.concat([x_avg, x_max], dim=1)  # (b,2,h,w)sattn = self.sa(x2)  # 7x7conv (b,1,h,w)return sattn * xclass ChannelAttention(nn.Module):def __init__(self, dim, reduction=8):super(ChannelAttention, self).__init__()self.gap = nn.AdaptiveAvgPool2d(1)self.ca = nn.Sequential(nn.Conv2d(dim, dim // reduction, 1, padding=0, bias=True),nn.ReLU(inplace=True),  # Relunn.Conv2d(dim // reduction, dim, 1, padding=0, bias=True),)def forward(self, x):  # x:[b,c,h,w]x_gap = self.gap(x)  #  [b,c,1,1]cattn = self.ca(x_gap)  # [b,c,1,1]return cattn * xclass Channel_Shuffle(nn.Module):def __init__(self, num_groups):super(Channel_Shuffle, self).__init__()self.num_groups = num_groupsdef forward(self, x):batch_size, chs, h, w = x.shapechs_per_group = chs // self.num_groupsx = torch.reshape(x, (batch_size, self.num_groups, chs_per_group, h, w))# (batch_size, num_groups, chs_per_group, h, w)x = x.transpose(1, 2)  # dim_1 and dim_2out = torch.reshape(x, (batch_size, -1, h, w))return outclass TransformerBlock(nn.Module):def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):super(TransformerBlock, self).__init__()self.norm1 = LayerNorm(dim, LayerNorm_type)self.attn = Attention(dim, num_heads, bias)self.norm2 = LayerNorm(dim, LayerNorm_type)self.ffn = FeedForward(dim, ffn_expansion_factor, bias)def forward(self, x):x = x + self.attn(self.norm1(x))x = x + self.ffn(self.norm2(x))return xdef to_3d(x):return rearrange(x, 'b c h w -> b (h w) c')def to_4d(x, h, w):return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)class BiasFree_LayerNorm(nn.Module):def __init__(self, normalized_shape):super(BiasFree_LayerNorm, self).__init__()if isinstance(normalized_shape, numbers.Integral):normalized_shape = (normalized_shape,)normalized_shape = torch.Size(normalized_shape)assert len(normalized_shape) == 1self.weight = nn.Parameter(torch.ones(normalized_shape))self.normalized_shape = normalized_shapedef forward(self, x):sigma = x.var(-1, keepdim=True, unbiased=False)return x / torch.sqrt(sigma + 1e-5) * self.weightclass WithBias_LayerNorm(nn.Module):def __init__(self, normalized_shape):super(WithBias_LayerNorm, self).__init__()if isinstance(normalized_shape, numbers.Integral):normalized_shape = (normalized_shape,)normalized_shape = torch.Size(normalized_shape)assert len(normalized_shape) == 1self.weight = nn.Parameter(torch.ones(normalized_shape))self.bias = nn.Parameter(torch.zeros(normalized_shape))self.normalized_shape = normalized_shapedef forward(self, x):device = x.devicemu = x.mean(-1, keepdim=True)sigma = x.var(-1, keepdim=True, unbiased=False)result = (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight.to(device) + self.bias.to(device)return resultclass LayerNorm(nn.Module):def __init__(self, dim, LayerNorm_type):super(LayerNorm, self).__init__()if LayerNorm_type == 'BiasFree':self.body = BiasFree_LayerNorm(dim)else:self.body = WithBias_LayerNorm(dim)def forward(self, x):h, w = x.shape[-2:]return to_4d(self.body(to_3d(x)), h, w)class FeedForward(nn.Module):def __init__(self, dim, ffn_expansion_factor, bias):super(FeedForward, self).__init__()hidden_features = int(dim * ffn_expansion_factor)self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,groups=hidden_features * 2, bias=bias)self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)def forward(self, x):device = x.deviceself.project_in = self.project_in.to(device)self.dwconv = self.dwconv.to(device)self.project_out = self.project_out.to(device)x = self.project_in(x)x1, x2 = self.dwconv(x).chunk(2, dim=1)x = F.gelu(x1) * x2x = self.project_out(x)return xclass Attention(nn.Module):def __init__(self, dim, num_heads, bias):super(Attention, self).__init__()self.num_heads = num_headsself.temperature = nn.Parameter(torch.ones(num_heads, 1, 1, dtype=torch.float32), requires_grad=True)self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3,bias=bias)self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)def forward(self, x):b, c, h, w = x.shapedevice = x.deviceself.qkv = self.qkv.to(device)self.qkv_dwconv = self.qkv_dwconv.to(device)self.project_out = self.project_out.to(device)qkv = self.qkv(x)qkv = self.qkv_dwconv(qkv)q, k, v = qkv.chunk(3, dim=1)q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)q = torch.nn.functional.normalize(q, dim=-1)k = torch.nn.functional.normalize(k, dim=-1)attn = (q @ k.transpose(-2, -1)) * self.temperature.to(device)attn = attn.softmax(dim=-1)out = (attn @ v)out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)out = self.project_out(out)return outclass resblock(nn.Module):def __init__(self, dim):super(resblock, self).__init__()# self.norm = LayerNorm(dim, LayerNorm_type='BiasFree')self.body = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False),nn.PReLU(),nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False))def forward(self, x):res = self.body((x))res += xreturn res#########################################################################
# Chain-of-Thought Prompt Generation Module (CGM)
class CotPromptParaGen(nn.Module):def __init__(self,prompt_inch,prompt_size, num_path=3):super(CotPromptParaGen, self).__init__()# (128,32,32)->(64,64,64)->(32,128,128)self.chain_prompts=nn.ModuleList([nn.ConvTranspose2d(in_channels=prompt_inch if idx==0 else prompt_inch//(2**idx),out_channels=prompt_inch//(2**(idx+1)),kernel_size=3, stride=2, padding=1) for idx in range(num_path)])def forward(self,x):prompt_params = []prompt_params.append(x)for pe in self.chain_prompts:x=pe(x)prompt_params.append(x)return prompt_params#########################################################################
# Content-driven Prompt Block (CPB)
class ContentDrivenPromptBlock(nn.Module):def __init__(self, dim, prompt_dim, reduction=8, num_splits=4):super(ContentDrivenPromptBlock, self).__init__()self.dim = dimself.num_splits = num_splitsself.pa2 = nn.Conv2d(2 * dim, dim, 7, padding=3, padding_mode='reflect', groups=dim, bias=True)self.sigmoid = nn.Sigmoid()self.conv3x3 = nn.Conv2d(prompt_dim, prompt_dim, kernel_size=3, stride=1, padding=1, bias=False)self.conv1x1 = nn.Conv2d(dim, prompt_dim, kernel_size=1, stride=1, bias=False)self.sa = SpatialAttention()self.ca = ChannelAttention(dim, reduction)self.myshuffle = Channel_Shuffle(2)self.out_conv1 = nn.Conv2d(prompt_dim + dim, dim, kernel_size=1, stride=1, bias=False)self.transformer_block = [TransformerBlock(dim=dim // num_splits, num_heads=1, ffn_expansion_factor=2.66, bias=False,LayerNorm_type='WithBias') for _ in range(num_splits)]def forward(self, x, prompt_param):# latent: (b,dim*8,h/8,w/8)  prompt_param3: (1, 256, 16, 16)x_ = xB, C, H, W = x.shapecattn = self.ca(x)  # channel-wise attnsattn = self.sa(x)  # spatial-wise attnpattn1 = sattn + cattnpattn1 = pattn1.unsqueeze(dim=2)  # [b,c,1,h,w]x = x.unsqueeze(dim=2)  # [b,c,1,h,w]x2 = torch.cat([x, pattn1], dim=2)  #  [b,c,2,h,w]x2 = Rearrange('b c t h w -> b (c t) h w')(x2)  # [b,c*2,h,w]x2 = self.myshuffle(x2)  # [c1,c1_att,c2,c2_att,...]pattn2 = self.pa2(x2)pattn2 = self.conv1x1(pattn2)  # [b,prompt_dim,h,w]prompt_weight = self.sigmoid(pattn2)  # Sigmodprompt_param = F.interpolate(prompt_param, (H, W), mode="bilinear")# (b,prompt_dim,prompt_size,prompt_size) -> (b,prompt_dim,h,w)prompt = prompt_weight * prompt_paramprompt = self.conv3x3(prompt)  # (b,prompt_dim,h,w)inter_x = torch.cat([x_, prompt], dim=1)  # (b,prompt_dim+dim,h,w)inter_x = self.out_conv1(inter_x)  # (b,dim,h,w) dim=64splits = torch.split(inter_x, self.dim // self.num_splits, dim=1)transformered_splits = []for i, split in enumerate(splits):transformered_split = self.transformer_block[i](split)transformered_splits.append(transformered_split)result = torch.cat(transformered_splits, dim=1)return result#########################################################################
# CPA_Enhancer
class CPA_arch(nn.Module):def __init__(self, c_in=3, c_out=3, dim=4, prompt_inch=128, prompt_size=32):super(CPA_arch, self).__init__()self.conv0 = RFAConv(c_in, dim)self.conv1 = RFAConv(dim, dim)self.conv2 = RFAConv(dim * 2, dim * 2)self.conv3 = RFAConv(dim * 4, dim * 4)self.conv4 = RFAConv(dim * 8, dim * 8)self.conv5 = RFAConv(dim * 8, dim * 4)self.conv6 = RFAConv(dim * 4, dim * 2)self.conv7 = RFAConv(dim * 2, c_out)self.down1 = Downsample(dim)self.down2 = Downsample(dim * 2)self.down3 = Downsample(dim * 4)self.prompt_param_ini = nn.Parameter(torch.rand(1, prompt_inch, prompt_size, prompt_size)) # (b,c,h,w)self.myPromptParamGen = CotPromptParaGen(prompt_inch=prompt_inch,prompt_size=prompt_size)self.prompt1 = ContentDrivenPromptBlock(dim=dim * 2 ** 1, prompt_dim=prompt_inch // 4, reduction=8)  # !!!!self.prompt2 = ContentDrivenPromptBlock(dim=dim * 2 ** 2, prompt_dim=prompt_inch // 2, reduction=8)self.prompt3 = ContentDrivenPromptBlock(dim=dim * 2 ** 3, prompt_dim=prompt_inch , reduction=8)self.up3 = Upsample(dim * 8)self.up2 = Upsample(dim * 4)self.up1 = Upsample(dim * 2)def forward(self, x):  # (b,c_in,h,w)prompt_params = self.myPromptParamGen(self.prompt_param_ini)prompt_param1 = prompt_params[2] # [1, 64, 64, 64]prompt_param2 = prompt_params[1]  # [1, 128, 32, 32]prompt_param3 = prompt_params[0]  # [1, 256, 16, 16]x0 = self.conv0(x)  # (b,dim,h,w)x1 = self.conv1(x0)  # (b,dim,h,w)x1_down = self.down1(x1)  # (b,dim,h/2,w/2)x2 = self.conv2(x1_down)  # (b,dim,h/2,w/2)x2_down = self.down2(x2)x3 = self.conv3(x2_down)x3_down = self.down3(x3)x4 = self.conv4(x3_down)device = x4.deviceself.prompt1 = self.prompt1.to(device)self.prompt2 = self.prompt2.to(device)self.prompt3 = self.prompt3.to(device)x4_prompt = self.prompt3(x4, prompt_param3)x3_up = self.up3(x4_prompt)x5 = self.conv5(torch.cat([x3_up, x3], 1))x5_prompt = self.prompt2(x5, prompt_param2)x2_up = self.up2(x5_prompt)x2_cat = torch.cat([x2_up, x2], 1)x6 = self.conv6(x2_cat)x6_prompt = self.prompt1(x6, prompt_param1)x1_up = self.up1(x6_prompt)x7 = self.conv7(torch.cat([x1_up, x1], 1))return x7if __name__ == "__main__":# Generating Sample imageimage_size = (1, 3, 640, 640)image = torch.rand(*image_size)out = CPA_arch(3, 3, 4)out = out(image)print(out.size())

四、手把手教你添加本文机制 

4.1 修改一

第一还是建立文件,我们找到如下yolov9-main/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。

bff292a267434120abcdf68c2eb75df5.png


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。

877ae272f7044aa2b5e98cafdccf0e42.png


4.3 修改三 

第三步我门中到如下文件'yolov9-main/models/yolo.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)!

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!

442a42a465544c09bf62941825179818.png

到此就修改完成了,大家可以复制下面的yaml文件运行,无需修改parse_model方法。。


五、CPA-Enhancer的yaml文件和运行记录

5.1 CPA-Enhancer的yaml文件

注意本文的代码计算量很高但是参数量不高,所以大家可能运行失败因为电脑算力不足而导致!

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, CPA_arch, []],[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 8], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# routing[6, 1, CBLinear, [[256]]], # 23[8, 1, CBLinear, [[256, 512]]], # 24[10, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 29-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 30# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 32-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 33# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 35-P5/32[[26, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

5.2 运行记录

 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏地址:

这篇关于YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991129

相关文章

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

创新、引领、发展——SAMPE中国2024年会在京盛大开幕

绿树阴浓夏日长,在这个色彩缤纷的季节,SAMPE中国2024年会暨第十九届国际先进复合材料制品原材料、工装及工程应用展览会在中国国际展览中心(北京朝阳馆)隆重开幕。新老朋友共聚一堂,把酒话桑麻。 为期4天的国际学术会议以“先进复合材料,引领产业创新与可持续化发展”为主题,设立了34个主题分会场,其中包括了可持续化会场、国际大学生会场、中法复合材料制造技术峰会三个国际会场和女科技工作者委员会沙龙,

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

关于如何更好管理好数据库的一点思考

本文尝试从数据库设计理论、ER图简介、性能优化、避免过度设计及权限管理方面进行思考阐述。 一、数据库范式 以下通过详细的示例说明数据库范式的概念,将逐步规范化一个例子,逐级说明每个范式的要求和变换过程。 示例:学生课程登记系统 初始表格如下: 学生ID学生姓名课程ID课程名称教师教师办公室1张三101数学王老师101室2李四102英语李老师102室3王五101数学王老师101室4赵六103物理陈

(超详细)YOLOV7改进-Soft-NMS(支持多种IoU变种选择)

1.在until/general.py文件最后加上下面代码 2.在general.py里面找到这代码,修改这两个地方 3.之后直接运行即可

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

时间服务器中,适用于国内的 NTP 服务器地址,可用于时间同步或 Android 加速 GPS 定位

NTP 是什么?   NTP 是网络时间协议(Network Time Protocol),它用来同步网络设备【如计算机、手机】的时间的协议。 NTP 实现什么目的?   目的很简单,就是为了提供准确时间。因为我们的手表、设备等,经常会时间跑着跑着就有误差,或快或慢的少几秒,时间长了甚至误差过分钟。 NTP 服务器列表 最常见、熟知的就是 www.pool.ntp.org/zo

服务器雪崩的应对策略之----SQL优化

SQL语句的优化是数据库性能优化的重要方面,特别是在处理大规模数据或高频访问时。作为一个C++程序员,理解SQL优化不仅有助于编写高效的数据库操作代码,还能增强对系统性能瓶颈的整体把握。以下是详细的SQL语句优化技巧和策略: SQL优化 1. 选择合适的数据类型2. 使用索引3. 优化查询4. 范式化和反范式化5. 查询重写6. 使用缓存7. 优化数据库设计8. 分析和监控9. 调整配置1、

设置Nginx缓存策略

详细信息 Nginx服务器的缓存策略设置方法有两种:add_header或者expires。 1. add_header 1)语法:add_header name value。 2)默认值:none。 3)使用范围:http、server、location。 配置示例如下: add_header cache-control "max-age=86400";#设置缓存时间为1天。add