本文主要是介绍如何使用 Hugging Face 的 Transformers 库来下载并使用一个qwen1.5的预训练模型[框架],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
要使用Hugging Face的Transformers库下载并使用Qwen1.5预训练模型,你可以按照以下步骤操作:
1.安装Transformers库: 确保你已经安装了transformers库的最新版本,至少是4.37.0,因为Qwen1.5已经被集成到这个版本中。如果还没有安装,可以使用以下命令安装:
pip install transformers
2.导入必要的模块: 在Python代码中,你需要导入AutoTokenizer和AutoModelForCausalLM(或根据你的具体需求选择相应的模型类):
from transformers import AutoTokenizer, AutoModelForCausalLM
3.加载预训练模型和分词器: 使用AutoTokenizer.from_pretrained和AutoModelForCausalLM.from_pretrained方法加载Qwen1.5模型及其对应的分词器。模型名称应该是qwen1.5:
tokenizer = AutoTokenizer.from_pretrained("qwen1.5")model = AutoModelForCausalLM.from_pretrained("qwen1.5")
4.准备输入文本: 根据你的应用,创建一个字符串作为输入文本:
input_text = "你好,我想了解关于人工智能的一些事情。"
5.编码输入文本: 使用分词器将输入文本转换为模型可接受的格式:
"使用分词器将输入文本转换为模型可接受的格式" 意味着将原始的、未经处理的自然语言文本通过特定的算法分割成一系列基础单元,这些单元可以是单词、子词(subwords)或者字符等,具体取决于所使用的分词器和模型的要求。这个过程对于大多数现代自然语言处理(NLP)模型来说至关重要,因为模型通常需要输入以数字表示的、固定长度的向量,而不是直接理解原始文本。
在Hugging Face的Transformers库中,AutoTokenizer类负责执行这个任务。它的工作流程大致如下:
分词(Tokenization):将文本拆分成一个个基本单元(tokens)。对于中文,这可能涉及按字符或词汇分隔;对于英文和其他语言,可能会进一步细分为子词以处理词汇的多样性。
添加特殊标记:为了帮助模型理解输入序列的结构,分词器会在序列的开始和结束添加特殊的标记,如[CLS]、[SEP]、<s>、</s>等,具体取决于模型的类型和用途。
映射到索引:每个token被映射到一个唯一的整数ID,这个ID在模型的词汇表中代表该token。词汇表是模型训练时建立的,包含所有模型能理解的token及其对应的ID。
转换为张量:最后,这些整数ID会被组织成一个或多个张量(通常是PyTorch或TensorFlow中的张量),以便于在神经网络模型中作为输入使用。
综上所述,"转换为模型可接受的格式"实质上是将文本数据转化为模型能够理解和处理的数字化、结构化形式,确保模型能够高效地进行预测或生成任务。
inputs = tokenizer(input_text, return_tensors="pt")
6.生成文本: 如果你想让模型生成文本,你可以使用model.generate方法。注意,对于Qwen1.5这样的语言模型,通常需要指定起始种子文本(inputs的input_ids)和一些生成参数,比如最大生成长度:
# 例如,生成10个字的文本generated_text = model.generate(inputs["input_ids"], max_length=10)
7.解码生成的文本: 将生成的ID序列转换回人类可读的文本:
generated_text = tokenizer.decode(generated_text[0])print(generated_text)
以上就是使用Hugging Face的Transformers库下载并使用Qwen1.5预训练模型的基本步骤。根据实际应用,你可能还需要调整生成参数,如温度(temperature)、顶级样本(top_k)、顶级概率(top_p)等以控制生成结果的多样性和质量。
# 导入所需库
from transformers import AutoTokenizer, AutoModelForCausalLM# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained("qwen1.5")
model = AutoModelForCausalLM.from_pretrained("qwen1.5")# 输入文本
input_text = "你好,我想知道未来人工智能会如何改变我们的生活。"# 使用分词器对输入文本进行编码
# `return_tensors="pt"`使得返回值为PyTorch张量,适用于后续模型的输入
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)# 生成文本配置
# 注意:这里的配置是示例性的,具体参数应根据需求调整
max_length = 50 # 生成文本的最大长度
num_return_sequences = 1 # 返回的生成序列数量
temperature = 1.0 # 控制生成的随机性,较低的值使生成结果更确定
top_p = 0.9 # 核心采样参数,控制候选token的选择范围# 生成文本
# 注意:对于某些模型,可能需要调整generate函数的参数,特别是对于有特定接口的模型
generated = model.generate(inputs.input_ids,max_length=max_length + len(inputs["input_ids"][0]), # 需要考虑输入长度num_return_sequences=num_return_sequences,temperature=temperature,top_p=top_p,pad_token_id=tokenizer.eos_token_id, # 结束生成的标志
)# 解码生成的文本
# 对于多个生成序列,这里只取第一个
generated_text = [tokenizer.decode(gen, skip_special_tokens=True, clean_up_tokenization_spaces=True) for gen in generated]
print("\nGenerated Text:")
for idx, text in enumerate(generated_text):print(f"Sequence {idx+1}: {text}")
以上为参考代码。具体根据实际,敬请关注,后期将持续完善学习记录。以下代码来自hugging face
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model ontomodel = AutoModelForCausalLM.from_pretrained("Qwen/CodeQwen1.5-7B-Chat",torch_dtype="auto",device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/CodeQwen1.5-7B-Chat")prompt = "Write a quicksort algorithm in python."
messages = [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512
)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
这篇关于如何使用 Hugging Face 的 Transformers 库来下载并使用一个qwen1.5的预训练模型[框架]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!