如何使用 Hugging Face 的 Transformers 库来下载并使用一个qwen1.5的预训练模型[框架]

本文主要是介绍如何使用 Hugging Face 的 Transformers 库来下载并使用一个qwen1.5的预训练模型[框架],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要使用Hugging Face的Transformers库下载并使用Qwen1.5预训练模型,你可以按照以下步骤操作:
1.安装Transformers库: 确保你已经安装了transformers库的最新版本,至少是4.37.0,因为Qwen1.5已经被集成到这个版本中。如果还没有安装,可以使用以下命令安装:

   pip install transformers

2.导入必要的模块: 在Python代码中,你需要导入AutoTokenizer和AutoModelForCausalLM(或根据你的具体需求选择相应的模型类):

   from transformers import AutoTokenizer, AutoModelForCausalLM

3.加载预训练模型和分词器: 使用AutoTokenizer.from_pretrained和AutoModelForCausalLM.from_pretrained方法加载Qwen1.5模型及其对应的分词器。模型名称应该是qwen1.5:

   tokenizer = AutoTokenizer.from_pretrained("qwen1.5")model = AutoModelForCausalLM.from_pretrained("qwen1.5")

4.准备输入文本: 根据你的应用,创建一个字符串作为输入文本:

   input_text = "你好,我想了解关于人工智能的一些事情。"

 5.编码输入文本: 使用分词器将输入文本转换为模型可接受的格式:

"使用分词器将输入文本转换为模型可接受的格式" 意味着将原始的、未经处理的自然语言文本通过特定的算法分割成一系列基础单元,这些单元可以是单词、子词(subwords)或者字符等,具体取决于所使用的分词器和模型的要求。这个过程对于大多数现代自然语言处理(NLP)模型来说至关重要,因为模型通常需要输入以数字表示的、固定长度的向量,而不是直接理解原始文本。
在Hugging Face的Transformers库中,AutoTokenizer类负责执行这个任务。它的工作流程大致如下:
分词(Tokenization):将文本拆分成一个个基本单元(tokens)。对于中文,这可能涉及按字符或词汇分隔;对于英文和其他语言,可能会进一步细分为子词以处理词汇的多样性。
添加特殊标记:为了帮助模型理解输入序列的结构,分词器会在序列的开始和结束添加特殊的标记,如[CLS]、[SEP]、<s>、</s>等,具体取决于模型的类型和用途。
映射到索引:每个token被映射到一个唯一的整数ID,这个ID在模型的词汇表中代表该token。词汇表是模型训练时建立的,包含所有模型能理解的token及其对应的ID。
转换为张量:最后,这些整数ID会被组织成一个或多个张量(通常是PyTorch或TensorFlow中的张量),以便于在神经网络模型中作为输入使用。
综上所述,"转换为模型可接受的格式"实质上是将文本数据转化为模型能够理解和处理的数字化、结构化形式,确保模型能够高效地进行预测或生成任务。

   inputs = tokenizer(input_text, return_tensors="pt")

6.生成文本: 如果你想让模型生成文本,你可以使用model.generate方法。注意,对于Qwen1.5这样的语言模型,通常需要指定起始种子文本(inputs的input_ids)和一些生成参数,比如最大生成长度:

   # 例如,生成10个字的文本generated_text = model.generate(inputs["input_ids"], max_length=10)

7.解码生成的文本: 将生成的ID序列转换回人类可读的文本:

   generated_text = tokenizer.decode(generated_text[0])print(generated_text)

以上就是使用Hugging Face的Transformers库下载并使用Qwen1.5预训练模型的基本步骤。根据实际应用,你可能还需要调整生成参数,如温度(temperature)、顶级样本(top_k)、顶级概率(top_p)等以控制生成结果的多样性和质量。

# 导入所需库
from transformers import AutoTokenizer, AutoModelForCausalLM# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained("qwen1.5")
model = AutoModelForCausalLM.from_pretrained("qwen1.5")# 输入文本
input_text = "你好,我想知道未来人工智能会如何改变我们的生活。"# 使用分词器对输入文本进行编码
# `return_tensors="pt"`使得返回值为PyTorch张量,适用于后续模型的输入
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)# 生成文本配置
# 注意:这里的配置是示例性的,具体参数应根据需求调整
max_length = 50  # 生成文本的最大长度
num_return_sequences = 1  # 返回的生成序列数量
temperature = 1.0  # 控制生成的随机性,较低的值使生成结果更确定
top_p = 0.9  # 核心采样参数,控制候选token的选择范围# 生成文本
# 注意:对于某些模型,可能需要调整generate函数的参数,特别是对于有特定接口的模型
generated = model.generate(inputs.input_ids,max_length=max_length + len(inputs["input_ids"][0]),  # 需要考虑输入长度num_return_sequences=num_return_sequences,temperature=temperature,top_p=top_p,pad_token_id=tokenizer.eos_token_id,  # 结束生成的标志
)# 解码生成的文本
# 对于多个生成序列,这里只取第一个
generated_text = [tokenizer.decode(gen, skip_special_tokens=True, clean_up_tokenization_spaces=True) for gen in generated]
print("\nGenerated Text:")
for idx, text in enumerate(generated_text):print(f"Sequence {idx+1}: {text}")

以上为参考代码。具体根据实际,敬请关注,后期将持续完善学习记录。以下代码来自hugging face

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model ontomodel = AutoModelForCausalLM.from_pretrained("Qwen/CodeQwen1.5-7B-Chat",torch_dtype="auto",device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/CodeQwen1.5-7B-Chat")prompt = "Write a quicksort algorithm in python."
messages = [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512
)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

这篇关于如何使用 Hugging Face 的 Transformers 库来下载并使用一个qwen1.5的预训练模型[框架]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990537

相关文章

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可