卷积、卷积核的维数、尺寸

2024-05-14 21:32
文章标签 卷积 尺寸 维数

本文主要是介绍卷积、卷积核的维数、尺寸,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://www.jianshu.com/p/6e1ef63615f8

 

在 Ubuntu 16.04 中安装谷歌 Chrome 浏览器

这篇关于卷积、卷积核的维数、尺寸的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989903

相关文章

4-4.Andorid Camera 之简化编码模板(获取摄像头 ID、选择最优预览尺寸)

一、Camera 简化思路 在 Camera 的开发中,其实我们通常只关注打开相机、图像预览和关闭相机,其他的步骤我们不应该花费太多的精力 为此,应该提供一个工具类,它有处理相机的一些基本工具方法,包括获取摄像头 ID、选择最优预览尺寸以及打印相机参数信息 二、Camera 工具类 CameraIdResult.java public class CameraIdResult {

Windows11电脑上自带的画图软件修改照片大小(不裁剪尺寸的情况下)

针对一张图片,有时候上传的图片有大小限制,那么在这种情况下如何修改其大小呢,在不裁剪尺寸的情况下 步骤如下: 1.选定一张图片,右击->打开方式->画图,如下: 第二步:打开图片后,我们可以看到图片的大小为82.1kb,点击上面工具栏的“重设大小和倾斜”进行调整,如下: 第三步:修改水平和垂直的数字,此处我修改为分别都修改为50,然后保存,可以看到大小变成63.5kb,如下:

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

深度学习基础--卷积的变种

随着卷积同经网络在各种问题中的广泛应用,卷积层也逐渐衍生出了许多变种,比较有代表性的有: 分组卷积( Group Convolution )、转置卷积 (Transposed Convolution) 、空洞卷积( Dilated/Atrous Convolution )、可变形卷积( Deformable Convolution ),下面分别介绍下。 1. 分组卷积 在普通的卷积操作中,一个

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

卷积神经网络(二)CIFAR100类别分类

一.数据介绍 总共一百个类,每个类有600个图像。每类500个训练图像,100个测试图像。没填图像都带有一个"精细"标签(它所属的类)核一个粗糙标签(它所属的超类)  二.API使用 用于构建CNN模型的API Conv2D:实现卷积,kernel_size,strides,padding,datafromat,'NHWC'核'NCHW' MaxPool2D:池化操作 impo

【CSS】尺寸单位

在 CSS 中,常见的尺寸单位有以下几种: 像素(px): 这是最常用的绝对单位。例如 width: 200px; 表示宽度为 200 像素。像素是固定的尺寸,不会随着屏幕分辨率或设备的不同而变化。 备注: 在不同的设备上,px 对应的物理尺寸并不固定。 对于电脑显示器,px 通常与屏幕的物理像素相对应,但这也会受到屏幕分辨率和缩放设置的影响。例如,在标准分辨率(通常为 96 DPI 左右

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

WebAPI(二)、DOM事件监听、事件对象event、事件流、事件委托、页面加载与滚动事件、页面尺寸事件

文章目录 一、 DOM事件1. 事件监听2. 事件类型(1)、鼠标事件(2)、焦点事件(3)、键盘事件(4)、文本事件 3. 事件对象(1)、获取事件对象(2)、事件对象常用属性 4. 环境对象 this5. 回调函数 二、 DOM事件进阶1. 事件流(1)、 捕获阶段(2)、 冒泡阶段(3)、 阻止冒泡(4) 、阻止元素默认行为(5) 、解绑事件 2. 事件委托3. 其他事件(1)、页面加