时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

2024-05-14 21:18

本文主要是介绍时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你还在发愁究竟怎么计算时间复杂度和空间复杂度,那你是来对地方了!

名词解释:

在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

时间复杂度的表示方法

其实就是算法(代码)的执行效率,算法代码的执行时间。我们来看下面一个简单的代码:

int sumFunc(int n) {  int num = 0;     // 执行一次  for (int i = 1; i <= n; ++i) {  // 执行n次    num = num + i;         // 执行n次  }        return num;}

假设,每行代码的执行时间为t,那么这块代码的时间就是(2n+2)*t

由此得出:代码执行时间T(n)与代码的执行次数是成正比的!

那么我们来看下一个例子:

int sumFunc(int n) {  int num = 0;    // 执行一次  for (int i = 1; i <= n; ++i) {       // 执行n次    for (int j = 1; j <= n; ++j) {     //执行n*n次      num = num + i * j;         // 执行n*n次    }  }}

同理,该代码执行时间为(2n*n+n+1)*t,没意见吧?继续往后看!

注意:在数据结构/算法中,通常使用T(n)表示代码执行时间,n表示数据规模大小,f(n)表示代码执行次数综合,所以上面这个例子可以表示为f(n)=(2n*n+n+1)*t,其实就是一个求总和的式子,O(大写O)表示代码执行时间与 f(n) 成正比例。

根据上面两个例子得出结论:代码的执行时间 T(n)与每行代码的执行次数 n 成正比,人们把这个规律总结成这么一个公式: T(n) = O(f(n))

所以呢,第一个例子中的 T(n)=O(2n+1),第二个例子中的 T(n)=O(2n*n+n+1),这就是时间复杂度表示法,也叫大O时间复杂度表示法。

但是,大O时间复杂度并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度,简称时间复杂度

与泰勒公式相反的是,算了,扯哪去了…

当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,所以可以直接忽略他们,只记录一个最大的量级就可以了,所以上述两个例子实际他们的时间复杂度应该记为:T(n)=O(n) ,T(n)=O(n*n)

我想你应该明白大致是怎么回事了,那么我们来看看如何去计算它?

时间复杂度的分析与计算方法

(1)循环次数最多原则

我们上面说过了,当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,可以直接忽略他们,只记录一个最大的量级就可以了。因此我们在计算时间复杂度时,只需关注循环次数最多的那段代码即可。

int sumFunc(int n) {int sum = 0;     //执行1次,忽略不计for (int i = 0; i < n; i++) {sum += i;    // 循环内执行次数最多,执行次数为n次,因此时间复杂度记为O(n)}  return sum;    //执行1次,忽略不计
}
 

 

(2)加法原则

int sumFunc(int n) {int sum = 0;     //常量级,忽略for (int i = 0; i < 99; i++) {sum += i;  //执行100次,还是常量级,忽略}for (int i = 0; i < n; i++) {sum += i;  //执行n次}for (int i = 0; i < n; i++){for (int j = 0; j < n; j++) {sum += i;  //执行n*n次}}return sum;
}

上述例子中,最大的两块代码时间复杂度分别为 O(n)和O(n*n),其结果本应该是:T(n)=O(n)+O(n*n),我们取其中最大的量级,因此整段代码的复杂度为:O(n * n)

所以得出结论:量级最大的那段代码时间复杂度=总的时间复杂度

(3)乘法原则

嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

void Func1(int n) {for (int i = 0; i < n; i++) {Func2(n);  //执行n次,每次都会调用Func2函数执行n次}
}
void Func2(int n) {int sum = 0;for (int i = 0; i < n; i++){sum += 1;  //执行n次}
}

因此这段代码时间复杂度为O(n) * O(n) = O(n*n) = O(n*n)

同理,如果将其中一个n换成m,那么它的时间复杂度就是O(n*m)

常见的几种时间复杂度

 

(1)O(1)常量级时间复杂度

void Func(void) {for (int i = 0; i < 100; i++) {printf("hello");  //执行一百次,也是常量级,记为O(1)}
}
void Func(void) {printf("hello");printf("hello");  printf("hello");//各执行一次,还是记为O(1)
}

相信你也看明白了,O(1)不是说代码只有一行,这个1它代表的是一个常量,即使它有以前一万行这样的也是O(1),因为它是固定的不会变化(也就是常量),所以凡是常量级复杂度代码,均记为O(1)

(2)常见的O(n)复杂度

void Func(int n) {for (int i = 0; i < n; i++) {printf("hello");}
}

不用多说了吧!继续!

(3)O(logn),O(nlogn) ,这就有点难度了!

首先我们来回忆以下换底公式:

记住公式啊,来看例子:

void Func(int n) {for (int i = 1; i < n; i++) {i = i * 2;}
}
可以看出,i = i * 2这行代码执行次数是最多的,那么到底执行了多少次呢?

第一次 i=2,执行第二次 i=4,执行第三次 i=8…

假设它执行了x次,那么x的取值为:

当上述代码的2改成3的时候,x的取值也就是:

当然不管log的底数是几,是e也好,是10也罢,统统记为:

这是为啥子念?由换底公式可以计算出:

换底之后,可以看出log3(2)其实就是一个常数,忽略它!而在这场游戏中,log默认就是以2为底的,所以统统记为O(logn)。

void Func(int n) {for (int i = 0; i < n; i++) {Func2(n);    //执行n次,嵌套调用,每次调用执行logn次}
}
void Func2(int n) {for (int i = 0; i < n; i++){i = i * 2;    //执行logn次}
}
所以这个O(nlogn)也很好理解了吧!

其他就不赘述了,相信聪明的你一定可以举一反三!如果对你有帮助,就点个“在看”支持下作者吧!

这篇关于时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989874

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑