时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

2024-05-14 21:18

本文主要是介绍时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你还在发愁究竟怎么计算时间复杂度和空间复杂度,那你是来对地方了!

名词解释:

在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

时间复杂度的表示方法

其实就是算法(代码)的执行效率,算法代码的执行时间。我们来看下面一个简单的代码:

int sumFunc(int n) {  int num = 0;     // 执行一次  for (int i = 1; i <= n; ++i) {  // 执行n次    num = num + i;         // 执行n次  }        return num;}

假设,每行代码的执行时间为t,那么这块代码的时间就是(2n+2)*t

由此得出:代码执行时间T(n)与代码的执行次数是成正比的!

那么我们来看下一个例子:

int sumFunc(int n) {  int num = 0;    // 执行一次  for (int i = 1; i <= n; ++i) {       // 执行n次    for (int j = 1; j <= n; ++j) {     //执行n*n次      num = num + i * j;         // 执行n*n次    }  }}

同理,该代码执行时间为(2n*n+n+1)*t,没意见吧?继续往后看!

注意:在数据结构/算法中,通常使用T(n)表示代码执行时间,n表示数据规模大小,f(n)表示代码执行次数综合,所以上面这个例子可以表示为f(n)=(2n*n+n+1)*t,其实就是一个求总和的式子,O(大写O)表示代码执行时间与 f(n) 成正比例。

根据上面两个例子得出结论:代码的执行时间 T(n)与每行代码的执行次数 n 成正比,人们把这个规律总结成这么一个公式: T(n) = O(f(n))

所以呢,第一个例子中的 T(n)=O(2n+1),第二个例子中的 T(n)=O(2n*n+n+1),这就是时间复杂度表示法,也叫大O时间复杂度表示法。

但是,大O时间复杂度并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度,简称时间复杂度

与泰勒公式相反的是,算了,扯哪去了…

当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,所以可以直接忽略他们,只记录一个最大的量级就可以了,所以上述两个例子实际他们的时间复杂度应该记为:T(n)=O(n) ,T(n)=O(n*n)

我想你应该明白大致是怎么回事了,那么我们来看看如何去计算它?

时间复杂度的分析与计算方法

(1)循环次数最多原则

我们上面说过了,当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,可以直接忽略他们,只记录一个最大的量级就可以了。因此我们在计算时间复杂度时,只需关注循环次数最多的那段代码即可。

int sumFunc(int n) {int sum = 0;     //执行1次,忽略不计for (int i = 0; i < n; i++) {sum += i;    // 循环内执行次数最多,执行次数为n次,因此时间复杂度记为O(n)}  return sum;    //执行1次,忽略不计
}
 

 

(2)加法原则

int sumFunc(int n) {int sum = 0;     //常量级,忽略for (int i = 0; i < 99; i++) {sum += i;  //执行100次,还是常量级,忽略}for (int i = 0; i < n; i++) {sum += i;  //执行n次}for (int i = 0; i < n; i++){for (int j = 0; j < n; j++) {sum += i;  //执行n*n次}}return sum;
}

上述例子中,最大的两块代码时间复杂度分别为 O(n)和O(n*n),其结果本应该是:T(n)=O(n)+O(n*n),我们取其中最大的量级,因此整段代码的复杂度为:O(n * n)

所以得出结论:量级最大的那段代码时间复杂度=总的时间复杂度

(3)乘法原则

嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

void Func1(int n) {for (int i = 0; i < n; i++) {Func2(n);  //执行n次,每次都会调用Func2函数执行n次}
}
void Func2(int n) {int sum = 0;for (int i = 0; i < n; i++){sum += 1;  //执行n次}
}

因此这段代码时间复杂度为O(n) * O(n) = O(n*n) = O(n*n)

同理,如果将其中一个n换成m,那么它的时间复杂度就是O(n*m)

常见的几种时间复杂度

 

(1)O(1)常量级时间复杂度

void Func(void) {for (int i = 0; i < 100; i++) {printf("hello");  //执行一百次,也是常量级,记为O(1)}
}
void Func(void) {printf("hello");printf("hello");  printf("hello");//各执行一次,还是记为O(1)
}

相信你也看明白了,O(1)不是说代码只有一行,这个1它代表的是一个常量,即使它有以前一万行这样的也是O(1),因为它是固定的不会变化(也就是常量),所以凡是常量级复杂度代码,均记为O(1)

(2)常见的O(n)复杂度

void Func(int n) {for (int i = 0; i < n; i++) {printf("hello");}
}

不用多说了吧!继续!

(3)O(logn),O(nlogn) ,这就有点难度了!

首先我们来回忆以下换底公式:

记住公式啊,来看例子:

void Func(int n) {for (int i = 1; i < n; i++) {i = i * 2;}
}
可以看出,i = i * 2这行代码执行次数是最多的,那么到底执行了多少次呢?

第一次 i=2,执行第二次 i=4,执行第三次 i=8…

假设它执行了x次,那么x的取值为:

当上述代码的2改成3的时候,x的取值也就是:

当然不管log的底数是几,是e也好,是10也罢,统统记为:

这是为啥子念?由换底公式可以计算出:

换底之后,可以看出log3(2)其实就是一个常数,忽略它!而在这场游戏中,log默认就是以2为底的,所以统统记为O(logn)。

void Func(int n) {for (int i = 0; i < n; i++) {Func2(n);    //执行n次,嵌套调用,每次调用执行logn次}
}
void Func2(int n) {for (int i = 0; i < n; i++){i = i * 2;    //执行logn次}
}
所以这个O(nlogn)也很好理解了吧!

其他就不赘述了,相信聪明的你一定可以举一反三!如果对你有帮助,就点个“在看”支持下作者吧!

这篇关于时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989874

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

批处理以当前时间为文件名创建文件

批处理以当前时间为文件名创建文件 批处理创建空文件 有时候,需要创建以当前时间命名的文件,手动输入当然可以,但是有更省心的方法吗? 假设我是 windows 操作系统,打开命令行。 输入以下命令试试: echo %date:~0,4%_%date:~5,2%_%date:~8,2%_%time:~0,2%_%time:~3,2%_%time:~6,2% 输出类似: 2019_06